cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077353 a(n) = (concatenation in ascending order of divisors of 5^n)/5^n.

Original entry on oeis.org

1, 3, 61, 12201, 2440201, 4880402001, 97608040020001, 1952160800400020001, 390432160080004000200001, 780864320160008000400002000001, 1561728640320016000800004000002000001, 31234572806400320016000080000040000020000001, 6246914561280064003200016000008000004000000200000001
Offset: 0

Views

Author

Amarnath Murthy, Nov 05 2002

Keywords

Examples

			a(5) = 15251256253125/3125 = 4880402001.
		

Crossrefs

Programs

  • Maple
    a:= n-> parse(cat(5^i$i=0..n))/5^n:
    seq(a(n), n=0..12);  # Alois P. Heinz, May 16 2025
  • Mathematica
    A077353[n_] := FromDigits[Flatten[IntegerDigits[Divisors[#]]]]/# & [5^n];
    Array[A077353, 16, 0] (* or *)
    FoldList[10^IntegerLength[5^#2]/5*# + 1 &, 1, Range[15]] (* Paolo Xausa, May 19 2025 *)
  • PARI
    a(n) = eval(concat(apply(x->Str(x),divisors(5^n))))/5^n \\ Max Alekseyev, Dec 12 2011
    
  • PARI
    a(n) = if(n==0,1,(10^#Str(5^n)/5)*a(n-1)+1) \\ Jason Yuen, Aug 21 2024

Formula

a(0) = 1, a(n) = (10^A055642(5^n)/5)*a(n-1) + 1. - Jason Yuen, Aug 21 2024

Extensions

More terms from Max Alekseyev, Dec 12 2011