cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A077385 Triangle read by rows in which n-th row contains 2n-1 terms starting from n^0 to n^(n-1) in increasing order and then in decreasing order to n^0.

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 9, 3, 1, 1, 4, 16, 64, 16, 4, 1, 1, 5, 25, 125, 625, 125, 25, 5, 1, 1, 6, 36, 216, 1296, 7776, 1296, 216, 36, 6, 1, 1, 7, 49, 343, 2401, 16807, 117649, 16807, 2401, 343, 49, 7, 1, 1, 8, 64, 512, 4096, 32768, 262144, 2097152, 262144, 32768, 4096, 512, 64, 8, 1
Offset: 1

Views

Author

Amarnath Murthy, Nov 06 2002

Keywords

Examples

			Irregular triangle begins as:
  1;
  1, 2,  1;
  1, 3,  9,   3,    1;
  1, 4, 16,  64,   16,     4,      1;
  1, 5, 25, 125,  625,   125,     25,     5,    1;
  1, 6, 36, 216, 1296,  7776,   1296,   216,   36,   6,  1;
  1, 7, 49, 343, 2401, 16807, 117649, 16807, 2401, 343, 49, 7, 1;
		

Crossrefs

Programs

  • Magma
    A077385:= func< n,k | k lt n select n^k else n^(2*n-k-2) >;
    [A077385(n,k): k in [0..2*n-2], n in [1..12]]; // G. C. Greubel, Sep 21 2022
    
  • Maple
    A077385 := proc(n,k) if k < n then n^k ; else n^(2*n-k-2) ; fi ; end: for n from 1 to 10 do for k from 0 to 2*n-2 do printf("%d, ",A077385(n,k)) ; od : od : # R. J. Mathar, Jul 03 2007
  • Mathematica
    Table[Join[n^Range[0,n-1],n^Range[n-2,0,-1]],{n,8}]//Flatten (* Harvey P. Dale, Oct 13 2017 *)
  • SageMath
    def A077385(n,k): return n^k if (kA077385(n,k) for k in (0..2*n-2)] for n in (1..12)]) # G. C. Greubel, Sep 21 2022

Formula

T(n, k) = n^k for k < n, otherwise n^(2*n-k-2), for n >= 1, 0 <= k <= 2*n-2.
From G. C. Greubel, Sep 21 2022: (Start)
T(n, 0) = T(n, 2*n-2) = 1.
T(n, n-1) = A000169(n).
T(n, n) = A000272(n).
T(n, 2*n-2-k) = T(n, k).
Sum_{k=0..n-1} T(n, k) = A023037(n).
Sum_{k=0..n-2} T(n, k) = A060072(n).
Sum_{k=0..2*n-2} T(n, k) = A077386(n) = 2*A060072(n) + A000169(n), n > 1. (End)

Extensions

More terms from R. J. Mathar, Jul 03 2007
Showing 1-1 of 1 results.