A077397 Expansion of (1+31*x-2*x^2-2*x^3)/(1-16*x^2+x^4).
1, 31, 14, 494, 223, 7873, 3554, 125474, 56641, 1999711, 902702, 31869902, 14386591, 507918721, 229282754, 8094829634, 3654137473, 129009355423, 58236916814, 2056054857134, 928136531551, 32767868358721, 14791947588002, 522229838882402, 235743024876481
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,16,0,-1).
Crossrefs
Used for calculating the values in A077398
Programs
-
Magma
Q:=Rationals(); R
:=PowerSeriesRing(Q,30); Coefficients(R!((1+31*x-2*x^2-2*x^3)/(1-16*x^2+x^4))); // G. C. Greubel, Jan 18 2018 -
Mathematica
CoefficientList[Series[(1+31x-2x^2-2x^3)/(1-16x^2+x^4), {x,0,40}],x] (* Harvey P. Dale, Mar 25 2011 *)
-
PARI
my(x='x+O('x^30)); Vec((1+31*x-2*x^2-2*x^3)/(1-16*x^2+x^4)) \\ G. C. Greubel, Jan 18 2018
Formula
a(2*n+4) = 16*a(2*n+2) - a(2*n), with a(0)=1, a(2)=14;
a(2*n+5) = 16*a(2*n+3) - a(2n+1), with a(1)=31, a(3)=494.
a(n) = 16*a(n-2) - a(n-4) for n>3. - Colin Barker, Jul 27 2020
Extensions
More terms from Harvey P. Dale, Mar 25 2011