A077409 Bisection (even part) of Chebyshev sequence with Diophantine property.
7, 59, 583, 5771, 57127, 565499, 5597863, 55413131, 548533447, 5429921339, 53750679943, 532076878091, 5267018100967, 52138104131579, 516114023214823, 5109002128016651, 50573907256951687, 500630070441500219, 4955726797158050503, 49056637901139004811
Offset: 0
Examples
59 = a(1) = sqrt(24*A077251(1)^2 + 25) = sqrt(24*12^2 + 25) = sqrt(3481) = 59.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Tanya Khovanova, Recursive Sequences
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (10,-1).
Programs
-
Magma
I:=[7,59]; [n le 2 select I[n] else 10*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 18 2018
-
Mathematica
CoefficientList[Series[(7 - 11 z)/(z^2 - 10 z + 1), {z, 0, 200}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 11 2011 *) LinearRecurrence[{10,-1}, {7,59}, 30] (* G. C. Greubel, Jan 18 2018 *)
-
PARI
a(n)=if(n<0,0,subst(poltchebi(n+1)+2*poltchebi(n),x,5))
-
PARI
Vec((7-11*x)/(1-10*x+x^2) + O(x^30)) \\ Colin Barker, Jun 15 2015
-
PARI
a(n)=polchebyshev(n+1,,5)+2*polchebyshev(n,,5) \\ Charles R Greathouse IV, Jun 15 2015
-
PARI
a(n)=([0,1;-1,10]^n*[7;59])[1,1] \\ Charles R Greathouse IV, Jun 15 2015
Comments