cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077409 Bisection (even part) of Chebyshev sequence with Diophantine property.

Original entry on oeis.org

7, 59, 583, 5771, 57127, 565499, 5597863, 55413131, 548533447, 5429921339, 53750679943, 532076878091, 5267018100967, 52138104131579, 516114023214823, 5109002128016651, 50573907256951687, 500630070441500219, 4955726797158050503, 49056637901139004811
Offset: 0

Views

Author

Wolfdieter Lang, Nov 08 2002

Keywords

Comments

a(n)^2 - 24*b(n)^2 = 25, with the companion sequence b(n) = A077251(n).
The odd part is A077250(n) with Diophantine companion A077249(n).

Examples

			59 = a(1) = sqrt(24*A077251(1)^2 + 25) = sqrt(24*12^2 + 25) = sqrt(3481) = 59.
		

Programs

  • Magma
    I:=[7,59]; [n le 2 select I[n] else 10*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 18 2018
  • Mathematica
    CoefficientList[Series[(7 - 11 z)/(z^2 - 10 z + 1), {z, 0, 200}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 11 2011 *)
    LinearRecurrence[{10,-1}, {7,59}, 30] (* G. C. Greubel, Jan 18 2018 *)
  • PARI
    a(n)=if(n<0,0,subst(poltchebi(n+1)+2*poltchebi(n),x,5))
    
  • PARI
    Vec((7-11*x)/(1-10*x+x^2) + O(x^30)) \\ Colin Barker, Jun 15 2015
    
  • PARI
    a(n)=polchebyshev(n+1,,5)+2*polchebyshev(n,,5) \\ Charles R Greathouse IV, Jun 15 2015
    
  • PARI
    a(n)=([0,1;-1,10]^n*[7;59])[1,1] \\ Charles R Greathouse IV, Jun 15 2015
    

Formula

a(n) = 10*a(n-1)- a(n-2), a(-1)=11, a(0)=7.
a(n) = T(n+1, 5)+2*T(n, 5), with T(n, x) Chebyshev's polynomials of the first kind, A053120. T(n, 5) = A001079(n).
a(n) = sqrt(24*A077251(n)^2 + 25).
G.f.: (7-11*x)/(1-10*x+x^2).