cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077411 Combined Diophantine Chebyshev sequences A077409 and A077250.

Original entry on oeis.org

7, 11, 59, 103, 583, 1019, 5771, 10087, 57127, 99851, 565499, 988423, 5597863, 9784379, 55413131, 96855367, 548533447, 958769291, 5429921339, 9490837543, 53750679943, 93949606139, 532076878091, 930005223847, 5267018100967
Offset: 0

Views

Author

Wolfdieter Lang, Nov 08 2002

Keywords

Comments

a(n)^2 - 24*b(n)^2 = 25, with the companion sequence b(n)= A077410(n).

Examples

			59 = a(2) = sqrt(24*A077410(2)^2 + 25) = sqrt(24*12^2 + 25)= sqrt(3481) = 59.
		

Programs

  • Magma
    I:=[7,11,59,103]; [n le 4 select I[n] else 10*Self(n-2) - Self(n-4): n in [1..30]]; // G. C. Greubel, Jan 18 2018
  • Mathematica
    CoefficientList[Series[(1-x)*(7+18*x+7*x^2)/(1-10*x^2+x^4), {x,0,50}], x] (* or *) LinearRecurrence[{0,10,0,-1}, {7,11,59,103}, 30] (* G. C. Greubel, Jan 18 2018 *)
  • PARI
    x='x+O('x^30); Vec((1-x)*(7+18*x+7*x^2)/(1-10*x^2+x^4)) \\ G. C. Greubel, Jan 18 2018
    

Formula

a(2*k)= A077409(k) and a(2*k+1)= A077250(k), k>=0.
a(n)= sqrt(24*A077410(n)^2 + 25).
G.f.: (1-x)*(7+18*x+7*x^2)/(1-10*x^2+x^4).