A077413 Bisection (odd part) of Chebyshev sequence with Diophantine property.
2, 13, 76, 443, 2582, 15049, 87712, 511223, 2979626, 17366533, 101219572, 589950899, 3438485822, 20040964033, 116807298376, 680802826223, 3968009658962, 23127255127549, 134795521106332, 785645871510443, 4579079707956326, 26688832376227513, 155553914549408752
Offset: 0
Examples
8*a(1)^2 + 17 = 8*13^2+17 = 1369 = 37^2 = A077239(1)^2. G.f. = 2 + 13*x + 76*x^2 + 443*x^3 + 2582*x^4 + ... - _Michael Somos_, Jul 30 2024
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Tanya Khovanova, Recursive Sequences
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (6,-1).
Programs
-
Magma
I:=[2,13]; [n le 2 select I[n] else 6*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 18 2018
-
Mathematica
LinearRecurrence[{6,-1}, {2,13}, 30] (* or *) CoefficientList[Series[ (2+x)/(1-6*x+x^2), {x, 0, 50}], x] (* G. C. Greubel, Jan 18 2018 *) a[ n_] := 2*ChebyshevU[n, 3] + ChebyshevU[n-1, 3]; (* Michael Somos, Jul 30 2024 *)
-
PARI
Vec((2+x)/(1-6*x+x^2) + O(x^30)) \\ Colin Barker, Jun 16 2015
-
PARI
{a(n) = 2*polchebyshev(n, 2, 3) + polchebyshev(n-1, 2, 3)}; /* Michael Somos, Jul 30 2024 */
-
PARI
{a(n) = my(w = 3 + quadgen(32)); imag(w^n + 2*w^(n+1))}; /* Michael Somos, Jul 30 2024 */
Formula
a(n) = 6*a(n-1) - a(n-2), a(-1)=-1, a(0)=2.
a(n) = 2*S(n, 6)+S(n-1, 6), with S(n, x) = U(n, x/2), Chebyshev polynomials of 2nd kind, A049310. S(n, 6) = A001109(n+1).
G.f.: (2+x)/(1-6*x+x^2).
a(n) = (((3-2*sqrt(2))^n*(-7+4*sqrt(2))+(3+2*sqrt(2))^n*(7+4*sqrt(2))))/(4*sqrt(2)). - Colin Barker, Oct 12 2015
a(n) = -A054488(-1-n) for all n in Z. - Michael Somos, Jul 30 2024
Comments