A077426 Nonsquare integers n such that the continued fraction (sqrt(n)+1)/2 has odd period length.
5, 13, 17, 29, 37, 41, 53, 61, 65, 73, 85, 89, 97, 101, 109, 113, 125, 137, 145, 149, 157, 173, 181, 185, 193, 197, 229, 233, 241, 257, 265, 269, 277, 281, 293, 313, 317, 325, 337, 349, 353, 365, 373, 389, 397, 401, 409, 421, 425, 433, 445, 449, 457, 461, 481, 485
Offset: 1
References
- O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 30, table p. 108).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Wikipedia, Pell's equation
Programs
-
Maple
isOddPrim := proc(n::integer) local cf; cf := numtheory[cfrac]((sqrt(n)+1)/2,'periodic','quotients') ; if nops(op(2,cf)) mod 2 =1 then RETURN(true) ; else RETURN(false) ; fi ; end: notA077426 := proc(n::integer) if issqr(n) then RETURN(true) ; elif not isOddPrim(n) then RETURN(true) ; else RETURN(false) ; fi ; end: A077426 := proc(n::integer) local resul,i ; resul := 5 ; i := 1 ; while i < n do resul := resul+4 ; while notA077426(resul) do resul := resul+4 ; od ; i:= i+1 ; od ; RETURN(resul) ; end: for n from 1 to 61 do print(A077426(n)) ; od : # R. J. Mathar, Apr 25 2006
-
Mathematica
fQ[n_] := !IntegerQ@ Sqrt@ n && OddQ@ Length@ ContinuedFraction[(Sqrt@ n + 1)/2][[2]]; Select[Range@ 500, fQ] (* Robert G. Wilson v, Nov 17 2012 *)
Extensions
Edited and extended by Max Alekseyev, Mar 03 2010
Edited by Max Alekseyev, Mar 05 2010
Comments