A077438 Numbers k such that Sum_{d|k} mu(d) mu(n/d)^2 = -1.
4, 9, 25, 49, 121, 169, 289, 361, 529, 841, 900, 961, 1369, 1681, 1764, 1849, 2209, 2809, 3481, 3721, 4356, 4489, 4900, 5041, 5329, 6084, 6241, 6889, 7921, 9409, 10201, 10404, 10609, 11025, 11449, 11881, 12100, 12769, 12996, 16129, 16900
Offset: 1
Keywords
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..1000 (first 800 terms from G. C. Greubel)
Programs
-
Mathematica
fQ[n_] := Block[{d = Divisors@ n}, Plus @@ (MoebiusMu[#] MoebiusMu[n/#]^2 & /@ d) == -1]; Select[Range@17000, fQ] (* Robert G. Wilson v, Dec 28 2016 *)
-
PARI
isok(n) = sumdiv(n, d, moebius(d)*moebius(n/d)^2) == -1; \\ Michel Marcus, Nov 08 2013
-
PARI
is(n)=if(!issquare(n,&n), return(0)); my(f=factor(n)[,2]); #f%2 && vecmax(f)==1 \\ Charles R Greathouse IV, Oct 16 2015
Formula
a(n) = A030059(n)^2.
From Amiram Eldar, Jun 16 2020: (Start)
Sum_{k>=1} 1/a(k) = 9/(2*Pi^2) = A088245.
Sum_{k>=1} 1/a(k)^2 = 15/(2*Pi^4). (End)
Comments