cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A077454 a(n) = sigma_3(n^3)/sigma(n^3).

Original entry on oeis.org

1, 39, 511, 2359, 12621, 19929, 101179, 149943, 368089, 492219, 1611831, 1205449, 4457701, 3945981, 6449331, 9588151, 22722609, 14355471, 44576623, 29772939, 51702469, 62861409, 141611691, 76620873, 196890121, 173850339, 268218727, 238681261, 574336533, 251523909
Offset: 1

Views

Author

Benoit Cloitre, Nov 30 2002

Keywords

Examples

			a(2) = sigma_3(2^3)/sigma(2^3) = 585/15 = 39.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(6*e+2) + p^(3*e+1) + 1)/(p^2 + p + 1); a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 30] (* Amiram Eldar, Sep 09 2020 *)
  • PARI
    a(n)=sumdiv(n^3,d,d^3)/sigma(n^3)
    
  • PARI
    a(n) = my(f=factor(n^3)); sigma(f, 3)/sigma(f); \\ Michel Marcus, Sep 09 2020

Formula

a(n) = A001158(n^3)/A000203(n^3).
Multiplicative with a(p^e) = (p^(6*e+2) + p^(3*e+1) + 1)/(p^2 + p + 1). - Amiram Eldar, Sep 09 2020
Sum_{k=1..n} a(k) ~ c * n^7, where c = (zeta(7)*Pi^4/630) * Product_{p prime} (1 - 1/p^2 - 1/p^6 + 1/p^7 - 1/p^8 + 1/p^9) = 0.09343400455... . - Amiram Eldar, Oct 28 2022

A077455 a(n) = sigma_4(n^4)/sigma(n^4).

Original entry on oeis.org

1, 2255, 360205, 8965359, 195688121, 812262275, 11869610005, 36654862063, 190649623129, 441276712855, 2853329308061, 3229367138595, 21506735660905, 26765970561275, 70487839624805, 150121132912367, 548357292625505, 429914900155895, 2096841596815405, 1754414256800439
Offset: 1

Views

Author

Benoit Cloitre, Nov 30 2002

Keywords

Examples

			a(2) = sigma_4(2^4)/sigma(2^4) = 69905/31 = 2255.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(12*e+3) + p^(8*e+2) + p^(4*e+1) + 1)/(p^3 + p^2 + p + 1); a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 20] (* Amiram Eldar, Sep 09 2020 *)
  • PARI
    a(n)=sumdiv(n^4,d,d^4)/sigma(n^4)
    
  • PARI
    a(n) = my(f=factor(n^4)); sigma(f, 4)/sigma(f); \\ Michel Marcus, Sep 09 2020

Formula

a(n) = A001158(n^4)/A000203(n^4).
Multiplicative with a(p^e) = (p^(12*e+3) + p^(8*e+2) + p^(4*e+1) + 1)/(p^3 + p^2 + p + 1). - Amiram Eldar, Sep 09 2020
Sum_{k=1..n} a(k) ~ c * n^13, where c = (zeta(3)*zeta(5)*zeta(9)*zeta(13)/13) * Product_{p prime} (1-1/p^2-1/p^3+1/p^5-1/p^7+1/p^8-1/p^12+2/p^13-2/p^14+2/p^15-1/p^16+2/p^17-3/p^18+1/p^19+1/p^21-1/p^22-1/p^26-1/p^27) = 0.048281563902... . - Amiram Eldar, Nov 20 2022

A077457 a(n) = sigma_4(n^4)/sigma_2(n^4).

Original entry on oeis.org

1, 205, 5905, 52429, 375601, 1210525, 5649505, 13421773, 38742049, 76998205, 212601841, 309593245, 810932305, 1158148525, 2217923905, 3435973837, 6951703105, 7942120045, 16936647121, 19692384829, 33360327025, 43583377405, 78163228705, 79255569565, 146719125601
Offset: 1

Views

Author

Benoit Cloitre, Nov 30 2002

Keywords

Comments

sigma_y(n^x) divides sigma_x(n^x) for all n if y divides x.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(8*e+2) + 1)/(p^2 + 1); a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 25] (* Amiram Eldar, Sep 09 2020 *)
  • PARI
    a(n)=sumdiv(n^4,d,d^4)/sumdiv(n^4,d,d^2)
    
  • PARI
    a(n) = my(f=factor(n^4)); sigma(f, 4)/sigma(f, 2); \\ Michel Marcus, Sep 09 2020

Formula

a(n) = A001159(n^4)/A001157(n^4).
Multiplicative with a(p^e) = (p^(8*e+2) + 1)/(p^2 + 1). - Amiram Eldar, Sep 09 2020
Sum_{k=1..n} a(k) ~ c * n^9, where c = (zeta(9)/9) * Product_{p prime} (1 - 1/p^3 + 1/p^5 - 1/p^7) = 0.09549806119... . - Amiram Eldar, Oct 28 2022
Showing 1-3 of 3 results.