A077460 Number of nonisomorphic ways a loop can cross a road (running East-West) 2n times.
1, 1, 1, 3, 12, 70, 464, 3482, 27779, 233556, 2038484, 18357672, 169599492, 1601270562, 15401735750, 150547249932, 1492451793728, 14980801247673, 152047178479946, 1558569469867824, 16119428039548246
Offset: 0
Examples
A meander can be specified by marking 2n equally spaced points along a line and recording the order in which the meander visits the points. For n = 2, 4, 6, 8 the solutions are as follows: n=2: 1 2 n=4: 1 2 3 4 n=6: 1 2 3 4 5 6, 1 2 3 6 5 4, 1 2 5 4 3 6 n=8: 1 2 3 4 5 6 7 8, 1 2 3 4 5 8 7 6, 1 2 3 4 7 6 5 8, 1 2 7 6 3 4 5 8, 1 2 3 6 7 8 5 4, 1 2 3 6 5 4 7 8, 1 2 7 6 5 4 3 8, 1 2 3 8 5 6 7 4, 1 2 3 8 7 4 5 6, 1 2 5 6 7 4 3 8, 1 2 7 4 5 6 3 8, 1 4 3 2 7 6 5 8
Links
- Andrew Howroyd, Illustration of Closed Meander Symmetries
Crossrefs
Programs
-
Mathematica
A000682 = Import["https://oeis.org/A000682/b000682.txt", "Table"][[All, 2]]; A005316 = Cases[Import["https://oeis.org/A005316/b005316.txt", "Table"], {, }][[All, 2]]; a[0] = a[1] = 1; a[n_] := If[OddQ[n], (A005316[[n + 1]] + A005316[[2n]] + A000682[[n]])/4, (A005316[[2n]] + 2 A005316[[n + 1]])/4]; a /@ Range[0, 20] (* Jean-François Alcover, Sep 06 2019, after Andrew Howroyd *)
Formula
Extensions
a(10)-a(20) from Andrew Howroyd, Nov 24 2015
Comments