cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077468 Greedy powers of (2/3): Sum_{n>=1} (2/3)^a(n) = 1.

Original entry on oeis.org

1, 3, 9, 12, 15, 17, 27, 34, 39, 46, 49, 52, 54, 66, 70, 73, 81, 84, 90, 95, 102, 106, 110, 116, 119, 124, 132, 140, 143, 149, 153, 158, 161, 165, 171, 177, 180, 183, 186, 189, 194, 198, 209, 215, 221, 224, 226, 233, 235, 241, 244, 248, 251, 255, 259, 262, 272
Offset: 1

Views

Author

Paul D. Hanna, Nov 06 2002

Keywords

Comments

The n-th greedy power of x, when 0.5 < x < 1, is the smallest integer exponent a(n) that does not cause the power series Sum_{k=1..n} x^a(k) to exceed unity.
A heuristic argument suggests that the limit of a(n)/n is m - Sum_{n >= m} log(1 + x^n)/log(x) = 4.9298413943..., where x=2/3 and m=floor(log(1-x)/log(x))=2. - Paul D. Hanna, Nov 16 2002

Examples

			a(3)=9 since (2/3) +(2/3)^3 +(2/3)^9 < 1 and (2/3) +(2/3)^3 +(2/3)^8 > 1; since the power 8 makes the sum > 1, then 9 is the 3rd greedy power of (2/3).
		

Crossrefs

Programs

  • Mathematica
    s = 0; a = {}; Do[ If[s + (2/3)^n < 1, s = s + (2/3)^n; a = Append[a, n]], {n, 1, 278}]; a
    heuristiclimit[x_] := (m=Floor[Log[x, 1-x]])+1/24+Log[x, Product[1+x^n, {n, 1, m-1}]/DedekindEta[I Log[x]/-Pi]*DedekindEta[ -I Log[x]/2/Pi]]; N[heuristiclimit[2/3], 20]

Formula

a(n) = Sum_{k=1..n} floor(g(k)) where g(1)=1, g(n+1) = log_x(x^frac(g(n)) - x) at x= 2/3 and frac(y) = y - floor(y).
It appears that, for n>1, a(n) = A073536(n-1) - Benoit Cloitre, Jun 04 2004

Extensions

Extended by John W. Layman, Robert G. Wilson v and Benoit Cloitre, Nov 07 2002