A077469 Greedy powers of (3/4): Sum_{n>=1} (3/4)^a(n) = 1.
1, 5, 16, 21, 29, 35, 39, 52, 57, 63, 68, 76, 82, 88, 93, 99, 106, 113, 118, 127, 134, 150, 155, 160, 167, 172, 182, 192, 197, 209, 215, 224, 229, 237, 242, 246, 260, 265, 272, 278, 289, 293, 310, 315, 320, 330, 337, 346, 353, 373, 379, 384, 390, 396, 405, 416
Offset: 1
Examples
a(3)=9 since (3/4) +(3/4)^5 +(3/4)^16 < 1 and (3/4) +(3/4)^5 +(3/4)^15 > 1.
Programs
-
Mathematica
s = 0; a = {}; Do[ If[s + (3/4)^n < 1, s = s + (3/4)^n; a = Append[a, n]], {n, 1, 428}]; a heuristiclimit[x_] := (m=Floor[Log[x, 1-x]])+1/24+Log[x, Product[1+x^n, {n, 1, m-1}]/DedekindEta[I Log[x]/-Pi]*DedekindEta[ -I Log[x]/2/Pi]]; N[heuristiclimit[3/4], 20]
Formula
a(n) = Sum_{k=1..n} floor(g(k)) where g(1)=1, g(n+1)=log_x(x^frac(g_n) - x) at x=(3/4) and frac(y) = y - floor(y).
a(n) seems to be asymptotic to c*n with c around 8.0... - Benoit Cloitre
Extensions
Edited and extended by Robert G. Wilson v, Nov 08 2002. Also extended by Benoit Cloitre, Nov 06 2002
Comments