A077470 Greedy powers of (3/5): Sum_{n>=1} (3/5)^a(n) = 1.
1, 2, 7, 9, 13, 15, 18, 20, 22, 27, 31, 37, 39, 40, 49, 55, 57, 66, 68, 70, 71, 77, 79, 81, 82, 87, 94, 98, 104, 106, 107, 114, 117, 120, 121, 129, 133, 136, 138, 141, 150, 151, 157, 158, 163, 166, 169, 173, 181, 184, 192, 198, 199, 205, 207, 209, 213, 218, 224
Offset: 1
Examples
a(3)=7 since (3/5) +(3/5)^2 +(3/5)^7 < 1 and (3/5) +(3/5)^2 +(3/5)^6 > 1.
Programs
-
Mathematica
s = 0; a = {}; Do[ If[s + (3/5)^n < 1, s = s + (3/5)^n; a = Append[a, n]], {n, 1, 226}]; a heuristiclimit[x_] := (m=Floor[Log[x, 1-x]])+1/24+Log[x, Product[1+x^n, {n, 1, m-1}]/DedekindEta[I Log[x]/-Pi]*DedekindEta[ -I Log[x]/2/Pi]]; N[heuristiclimit[3/5], 20]
Formula
a(n) = Sum_{k=1..n} floor(g(k)) where g(1)=1, g(n+1) = log_x(x^frac(g(n)) - x) at x=3/5 and frac(y) = y - floor(y).
a(n) seems to be asymptotic to c*n with c around 3.7... - Benoit Cloitre
Extensions
Edited and extended by Robert G. Wilson v, Nov 08 2002. Also extended by Benoit Cloitre, Nov 06 2002
Comments