A077473 Greedy powers of (5/9): Sum_{n>=1} (5/9)^a(n) = 1.
1, 2, 4, 6, 8, 11, 13, 18, 21, 24, 27, 28, 30, 32, 35, 37, 40, 43, 45, 50, 51, 59, 62, 64, 73, 76, 79, 82, 83, 86, 87, 93, 96, 99, 100, 103, 106, 108, 110, 112, 113, 117, 118, 121, 123, 126, 127, 131, 137, 139, 140, 143, 145, 146, 148, 154, 155, 157, 163, 165, 166
Offset: 1
Examples
a(3)=4 since (5/9) +(5/9)^2 +(5/9)^4 < 1 and (5/9) +(5/9)^2 +(5/9)^3 > 1.
Programs
-
Mathematica
s = 0; a = {}; Do[ If[s + (5/9)^n < 1, s = s + (5/9)^n; a = Append[a, n]], {n, 1, 173}]; a heuristiclimit[x_] := (m=Floor[Log[x, 1-x]])+1/24+Log[x, Product[1+x^n, {n, 1, m-1}]/DedekindEta[I Log[x]/-Pi]*DedekindEta[ -I Log[x]/2/Pi]]; N[heuristiclimit[5/9], 20]
Formula
a(n) = Sum_{k=1..n} floor(g(k)) where g(1)=1, g(n+1) = log_x(x^frac(g(n)) - x) (n>0) at x=5/9 and frac(y) = y - floor(y).
a(n) seems to be asymptotic to c*n with c around 2.8... - Benoit Cloitre
Extensions
Edited and extended by Robert G. Wilson v, Nov 08 2002. Also extended by Benoit Cloitre, Nov 06 2002
Comments