A077474 Greedy powers of (7/10): Sum_{n>=1} (7/10)^a(n) = 1.
1, 4, 8, 18, 21, 28, 31, 36, 41, 44, 55, 58, 71, 76, 79, 84, 88, 108, 125, 135, 141, 148, 155, 158, 164, 175, 180, 185, 195, 198, 218, 225, 230, 237, 242, 246, 250, 254, 259, 263, 268, 276, 281, 300, 305, 310, 317, 321, 326, 329, 334, 340, 343, 351, 359, 364
Offset: 1
Examples
a(3)=8 since (7/10) +(7/10)^3 +(7/10)^8 < 1 and (7/10) +(7/10)^3 +(7/10)^7 > 1.
Programs
-
Mathematica
s = 0; a = {}; Do[ If[s + (7/10)^n < 1, s = s + (7/10)^n; a = Append[a, n]], {n, 1, 368}]; a heuristiclimit[x_] := (m=Floor[Log[x, 1-x]])+1/24+Log[x, Product[1+x^n, {n, 1, m-1}]/DedekindEta[I Log[x]/-Pi]*DedekindEta[ -I Log[x]/2/Pi]]; N[heuristiclimit[7/10], 20]
Formula
a(n) = Sum_{k=1..n} floor(g(k)) where g(1)=1, g(n+1) = log_x(x^frac(g(n)) - x) at x=7/10 and frac(y) = y - floor(y).
a(n) seems to be asymptotic to c*n with c around 6... - Benoit Cloitre
Extensions
Edited and extended by Robert G. Wilson v, Nov 08 2002; also extended by Benoit Cloitre, Nov 06 2002
Comments