A077475 Greedy powers of (8/13): Sum_{n>=1} (8/13)^a(n) = 1.
1, 2, 11, 14, 25, 28, 30, 37, 39, 41, 43, 46, 48, 51, 54, 57, 60, 64, 66, 71, 76, 78, 80, 82, 84, 90, 95, 101, 103, 106, 110, 113, 115, 117, 127, 133, 135, 140, 146, 152, 157, 160, 162, 165, 167, 170, 173, 179, 181, 185, 189, 196, 200, 203, 206, 209, 212, 215, 220
Offset: 1
Examples
a(3)=11 since (8/13) +(8/13)^2 +(8/13)^11 < 1 and (8/13)+(8/13)^2+(8/13)^10 >1.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
V:= Vector(100): V[1]:= 1: T:= 1 - 8/13: for n from 2 to 100 do V[n]:= -floor(log[13/8](T)); T:= T - (8/13)^V[n]; od: convert(V,list); # Robert Israel, Aug 11 2020
-
Mathematica
s = 0; a = {}; Do[ If[s + (8/13)^n < 1, s = s + (8/13)^n; a = Append[a, n]], {n, 1, 250}]; a heuristiclimit[x_] := (m=Floor[Log[x, 1-x]])+1/24+Log[x, Product[1+x^n, {n, 1, m-1}]/DedekindEta[I Log[x]/-Pi]*DedekindEta[ -I Log[x]/2/Pi]]; N[heuristiclimit[8/13], 20]
Formula
a(n) = Sum_{k=1..n} floor(g(k)) where g(1)=1, g(n+1) = log_x(x^frac(g(n)) - x) at x=8/13 and frac(y) = y - floor(y).
a(n) seems to be asymptotic to c*n with c around 3.7... - Benoit Cloitre
Extensions
Edited and extended by Robert G. Wilson v, Nov 08 2002.
Extended by Benoit Cloitre, Nov 06 2002
Comments