A077496 Decimal expansion of lim_{n -> infinity} A001699(n)^(1/2^n).
1, 5, 0, 2, 8, 3, 6, 8, 0, 1, 0, 4, 9, 7, 5, 6, 4, 9, 9, 7, 5, 2, 9, 3, 6, 4, 2, 3, 7, 3, 2, 1, 6, 9, 4, 0, 8, 7, 3, 8, 8, 7, 1, 7, 4, 3, 9, 6, 3, 5, 7, 9, 3, 0, 6, 9, 9, 0, 6, 7, 1, 4, 2, 4, 3, 0, 8, 4, 7, 1, 9, 7, 8, 7, 1, 7, 5, 7, 6, 6, 0, 1, 9, 4, 5, 6, 6, 3, 3, 3, 9, 1, 7, 8, 6, 3, 0, 6, 1, 9, 8, 7, 2, 3, 7
Offset: 1
Examples
1.5028368010497564997529364237321694087388717439635793069906714243...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 6.10 Quadratic recurrence constants, p. 443.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437.
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437 (original plus references that F.Q. forgot to include - see last page!)
- Anna de Mier and Marc Noy, On the maximum number of cycles in outerplanar and series-parallel graphs, El. Notes Discr. Math., Vol. 34 (2009), pp. 489-493, Proposition 2.2.
- Eric Weisstein's World of Mathematics, Quadratic Recurrence Equation.
Programs
-
Magma
function A003095(n) if n eq 0 then return 0; else return 1 + A003095(n-1)^2; end if; return A003095; end function; function S(n) if n eq 1 then return Log(2)/2; else return S(n-1) + Log(1 + 1/A003095(n)^2)/2^n; end if; return S; end function; SetDefaultRealField(RealField(120)); Exp(S(12)); // G. C. Greubel, Nov 29 2022
-
Mathematica
digits = 105; Clear[b, beta]; b[0] = 1; b[n_] := b[n] = b[n-1]^2 + 1; b[10]; beta[n_] := beta[n] = b[n]^(2^(-n)); beta[5]; beta[n = 6]; While[ RealDigits[beta[n], 10, digits+5] != RealDigits[beta[n-1], 10, digits+5], Print["n = ", n]; n = n+1]; RealDigits[beta[n], 10, digits] // First (* Jean-François Alcover, Jun 18 2014 *) (* Second program *) A003095[n_]:= A003095[n]= If[n==0, 0, 1 + A003095[n-1]^2]; S[n_]:= S[n]= If[n==1, Log[2]/2, S[n-1] + Log[1 + 1/A003095[n]^2]/2^n]; RealDigits[Exp[S[13]], 10, 120][[1]] (* G. C. Greubel, Nov 29 2022 *)
-
SageMath
@CachedFunction def A003095(n): return 0 if (n==0) else 1 + A003095(n-1)^2 @CachedFunction def S(n): return log(2)/2 if (n==1) else S(n-1) + log(1 + 1/(A003095(n))^2)/2^n numerical_approx( exp(S(12)), digits=120) # G. C. Greubel, Nov 29 2022
Formula
Equals A076949^2. - Vaclav Kotesovec, Dec 17 2014
Equals exp(Sum_{k>=1} log(1+1/A003095(k)^2)/2^k) (Aho and Sloane, 1973). - Amiram Eldar, Feb 02 2022