cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077496 Decimal expansion of lim_{n -> infinity} A001699(n)^(1/2^n).

Original entry on oeis.org

1, 5, 0, 2, 8, 3, 6, 8, 0, 1, 0, 4, 9, 7, 5, 6, 4, 9, 9, 7, 5, 2, 9, 3, 6, 4, 2, 3, 7, 3, 2, 1, 6, 9, 4, 0, 8, 7, 3, 8, 8, 7, 1, 7, 4, 3, 9, 6, 3, 5, 7, 9, 3, 0, 6, 9, 9, 0, 6, 7, 1, 4, 2, 4, 3, 0, 8, 4, 7, 1, 9, 7, 8, 7, 1, 7, 5, 7, 6, 6, 0, 1, 9, 4, 5, 6, 6, 3, 3, 3, 9, 1, 7, 8, 6, 3, 0, 6, 1, 9, 8, 7, 2, 3, 7
Offset: 1

Views

Author

Benoit Cloitre, Dec 01 2002

Keywords

Examples

			1.5028368010497564997529364237321694087388717439635793069906714243...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 6.10 Quadratic recurrence constants, p. 443.

Crossrefs

Programs

  • Magma
    function A003095(n)
      if n eq 0 then return 0;
      else return 1 + A003095(n-1)^2;
      end if; return A003095;
    end function;
    function S(n)
      if n eq 1 then return Log(2)/2;
      else return S(n-1) + Log(1 + 1/A003095(n)^2)/2^n;
      end if; return S;
    end function;
    SetDefaultRealField(RealField(120)); Exp(S(12)); // G. C. Greubel, Nov 29 2022
    
  • Mathematica
    digits = 105; Clear[b, beta]; b[0] = 1; b[n_] := b[n] = b[n-1]^2 + 1; b[10]; beta[n_] := beta[n] = b[n]^(2^(-n)); beta[5]; beta[n = 6]; While[ RealDigits[beta[n], 10, digits+5] != RealDigits[beta[n-1], 10, digits+5], Print["n = ", n]; n = n+1]; RealDigits[beta[n], 10, digits] // First (* Jean-François Alcover, Jun 18 2014 *)
    (* Second program *)
    A003095[n_]:= A003095[n]= If[n==0, 0, 1 + A003095[n-1]^2];
    S[n_]:= S[n]= If[n==1, Log[2]/2, S[n-1] + Log[1 + 1/A003095[n]^2]/2^n];
    RealDigits[Exp[S[13]], 10, 120][[1]] (* G. C. Greubel, Nov 29 2022 *)
  • SageMath
    @CachedFunction
    def A003095(n): return 0 if (n==0) else 1 + A003095(n-1)^2
    @CachedFunction
    def S(n): return log(2)/2 if (n==1) else S(n-1) + log(1 + 1/(A003095(n))^2)/2^n
    numerical_approx( exp(S(12)), digits=120) # G. C. Greubel, Nov 29 2022

Formula

Equals A076949^2. - Vaclav Kotesovec, Dec 17 2014
Equals exp(Sum_{k>=1} log(1+1/A003095(k)^2)/2^k) (Aho and Sloane, 1973). - Amiram Eldar, Feb 02 2022