A077589 Decimal expansion of real part of the infinite power tower of i.
4, 3, 8, 2, 8, 2, 9, 3, 6, 7, 2, 7, 0, 3, 2, 1, 1, 1, 6, 2, 6, 9, 7, 5, 1, 6, 3, 5, 5, 1, 2, 6, 4, 8, 2, 4, 2, 6, 7, 8, 9, 7, 3, 5, 1, 6, 4, 6, 3, 9, 4, 6, 0, 3, 6, 0, 9, 2, 2, 1, 2, 4, 0, 4, 9, 5, 7, 9, 1, 5, 3, 2, 2, 2, 2, 6, 9, 5, 6, 8, 7, 6, 6, 9, 1, 7, 2, 1, 4, 0, 5, 3, 8, 2, 0, 4, 0, 7, 5, 4, 9
Offset: 0
Examples
0.43828293672703211162697516355126482426789735164639460360922124049579153222269568...
References
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 6.11, p. 449.
Links
- Eric Weisstein's World of Mathematics, i.
- Eric Weisstein's World of Mathematics, Power Tower.
Programs
-
Maple
evalf(Re(2*I*LambertW(-I*Pi/2)/Pi), 137); # Alois P. Heinz, Dec 12 2023
-
Mathematica
Prepend@@RealDigits[Re[ -ProductLog[ -Log[I]]/Log[I]], 10, 150]
-
PARI
z=(1+I)/2;e=.1^default(realprecision);until(e>abs(z-z-=(z-I^z)/(1-I^(z+1)*Pi/2)),);digits(real(z)\e) \\ M. F. Hasler, May 17 2018
Formula
The value is 2 (i/Pi) W(-i Pi/2) = 0.4382829... + i 0.360592..., where W denotes the principal branch of the Lambert W function. - David W. Cantrell, Nov 23 2007
Comments