cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077589 Decimal expansion of real part of the infinite power tower of i.

Original entry on oeis.org

4, 3, 8, 2, 8, 2, 9, 3, 6, 7, 2, 7, 0, 3, 2, 1, 1, 1, 6, 2, 6, 9, 7, 5, 1, 6, 3, 5, 5, 1, 2, 6, 4, 8, 2, 4, 2, 6, 7, 8, 9, 7, 3, 5, 1, 6, 4, 6, 3, 9, 4, 6, 0, 3, 6, 0, 9, 2, 2, 1, 2, 4, 0, 4, 9, 5, 7, 9, 1, 5, 3, 2, 2, 2, 2, 6, 9, 5, 6, 8, 7, 6, 6, 9, 1, 7, 2, 1, 4, 0, 5, 3, 8, 2, 0, 4, 0, 7, 5, 4, 9
Offset: 0

Views

Author

Eric W. Weisstein, Nov 07 2002

Keywords

Comments

This is the real part of i^i^i^i^i^i...

Examples

			0.43828293672703211162697516355126482426789735164639460360922124049579153222269568...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 6.11, p. 449.

Crossrefs

Cf. A049006, A077590 (imaginary part).

Programs

  • Maple
    evalf(Re(2*I*LambertW(-I*Pi/2)/Pi), 137);  # Alois P. Heinz, Dec 12 2023
  • Mathematica
    Prepend@@RealDigits[Re[ -ProductLog[ -Log[I]]/Log[I]], 10, 150]
  • PARI
    z=(1+I)/2;e=.1^default(realprecision);until(e>abs(z-z-=(z-I^z)/(1-I^(z+1)*Pi/2)),);digits(real(z)\e) \\ M. F. Hasler, May 17 2018

Formula

The value is 2 (i/Pi) W(-i Pi/2) = 0.4382829... + i 0.360592..., where W denotes the principal branch of the Lambert W function. - David W. Cantrell, Nov 23 2007