cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077596 Central coefficients of Moebius polynomials (A074586): coefficient of x^(n/2-1/2) if n is odd; coefficient of x^(n/2-1) if n is even and >4. The n-th Moebius polynomial, M(n,x), satisfies M(n,-1)=mu(n) the Moebius function of n.

Original entry on oeis.org

1, 2, 4, 8, 15, 30, 57, 108, 206, 393, 752, 1439, 2772, 5334, 10327, 19967, 38808, 75319, 146844, 285862, 558723, 1090370, 2135551, 4176224, 8193490, 16050930, 31537017, 61872863, 121721157, 239115024, 470918888, 926141652, 1825708221
Offset: 1

Views

Author

Benoit Cloitre and Paul D. Hanna, Nov 10 2002

Keywords

Comments

These terms seem to be asymptotic to c*2^n/sqrt(n) with c=1.2208..
c = 1.220916104316909855089768170983761594215082355524... . - Vaclav Kotesovec, Feb 11 2015

Examples

			These are the largest coefficients of the Moebius polynomials, which begin:
M(1,x) = 1;
M(2,x) = 1 + 2x;
M(3,x) = 1 + 4x + 2x^2;
M(4,x) = 1 + 7x + 8x^2 + 2x^3;
M(5,x) = 1 + 9x +15x^2 +10x^3 + 2x^4;
M(6,x) = 1 +13x +30x^2 +27x^3 +12x^4 + 2x^5;
M(7,x) = 1 +15x +43x^2 +57x^3 +39x^4 +14x^5 + 2x^6;
M(8,x) = 1 +19x +67x^2+108x^3 +98x^4 +53x^5 +16x^6 + 2x^7; ...
		

Crossrefs

Programs

  • Mathematica
    m[n_, 1] = 1; m[n_, k_] := m[n, k] = Sum[Floor[n/j]*m[j, k - 1], {j, 1, n - 1}];
    a[n_ /; n <= 4] := 2^(n - 1); a[n_?OddQ] := m[n, (n + 1)/2]; a[n_?EvenQ] := m[n, n/2]; Table[a[n], {n, 1, 33}] (* Jean-François Alcover, Jun 18 2013 *)