cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077598 Coefficient of x^2 in the n-th Moebius polynomial (A074586), M(n,x), which satisfies M(n,-1)=mu(n) the Moebius function of n.

Original entry on oeis.org

0, 0, 2, 8, 15, 30, 43, 67, 90, 123, 149, 203, 237, 290, 343, 415, 464, 556, 613, 716, 800, 899, 972, 1126, 1218, 1342, 1458, 1616, 1716, 1916, 2026, 2215, 2365, 2540, 2690, 2959, 3098, 3300, 3485, 3762, 3919, 4221, 4388, 4667, 4921, 5179, 5364, 5762
Offset: 1

Views

Author

Benoit Cloitre and Paul D. Hanna, Nov 10 2002

Keywords

Comments

These terms seem to be asymptotic to c*n^2*log(n) with c=0.69...

Examples

			These are the coefficients of x^2 in the Moebius polynomials, which begin: M(1,x)=1; M(2,x)=1 + 2x; M(3,x)=1 + 4x + 2x^2; M(4,x)=1 + 7x + 8x^2 + 2x^3; M(5,x)=1 + 9x +15x^2 +10x^3 + 2x^4; M(6,x)=1 +13x +30x^2 +27x^3 +12x^4 + 2x^5; M(7,x)=1 +15x +43x^2 +57x^3 +39x^4 +14x^5 + 2x^6; M(8,x)=1 +19x +67x^2+108x^3 +98x^4 +53x^5 +16x^6 + 2x^7.
		

Crossrefs

Programs

  • Mathematica
    m[n_, 1] = 1; m[n_, k_] := m[n, k] = Sum[Floor[n/j]*m[j, k - 1], {j, 1, n - 1}]; a[n_] := m[n, 3]; Table[a[n], {n, 1, 48}] (* Jean-François Alcover, Jun 18 2013 *)