cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077602 Decimal expansion of lim_{n->inf} M(n,1)/2^n, where M(n,1) is the sum of the coefficients of the n-th Moebius polynomial (cf. A074587).

Original entry on oeis.org

1, 5, 3, 0, 1, 9, 1, 4, 1, 4, 0, 1, 6, 5, 4, 9, 1, 8, 7, 1, 5, 4, 3, 6, 2, 3, 6, 1, 4, 9, 2, 6, 3, 3, 0, 2, 0, 2, 5, 9, 5, 1, 2, 3, 7, 4, 1, 1, 1, 5, 7, 1, 0, 0, 7, 0, 7, 0, 6, 0, 1, 1, 1, 3, 9, 3, 1, 7, 5, 3, 5, 5, 9, 5, 7, 1, 3, 7, 3, 1, 1, 3, 9, 8, 8, 1, 2
Offset: 1

Views

Author

Benoit Cloitre and Paul D. Hanna, Nov 10 2002

Keywords

Comments

Conjecture: M(n,1) ~ A077596(n) * sqrt(Pi*n/2), where A077596(n) is the largest coefficient of the n-th Moebius polynomial, M(n,x).

Examples

			1.530191414016549187154362361492633020259512374111571007070601113931753...
		

Crossrefs

Programs

  • Mathematica
    Clear[Moebius,f]; Moebius[n_, x_] := Moebius[n, x] = 1 + x*Sum[Moebius[k, x]*Floor[n/k], {k, 1, n-1}]; f[n_] := f[n] = RealDigits[Moebius[n, 1]/2^n, 10, 70] // First; f[n=100]; While[f[n] != f[n-100], n = n+100]; f[n] (* Jean-François Alcover, Feb 13 2013 *)