cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077608 Number of compositions of n into twin primes (i.e., primes that are members of a twin prime pair, like 3, 5, 7, 11, 13, but not 2 or 23).

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 1, 1, 2, 1, 3, 4, 3, 7, 7, 8, 14, 15, 21, 28, 33, 47, 58, 75, 103, 125, 167, 220, 275, 370, 474, 610, 806, 1028, 1347, 1752, 2253, 2954, 3812, 4944, 6451, 8329, 10841, 14077, 18226, 23720, 30745, 39903, 51857, 67214, 87313, 113340, 147017, 190974
Offset: 0

Views

Author

Philippe Flajolet, Nov 11 2002

Keywords

Examples

			a(15) = 8 since 15 = 11+7 = 7+11 = 5+13 = 13+5 = 3+5+7 = 3+7+5 = 5+3+7 = 5+7+3 = 7+3+5 = 7+5+3 and 3,5,7,11 belong to twin pairs.
		

Crossrefs

Programs

  • Maple
    A077608 := proc(n) coeff(series(1/(1-add(z^numtheory[ithprime](j)* subs([true=1,false=0],evalb(isprime(ithprime(j)-2) or isprime(ithprime(j)+2))),j=2..n+2)),z=0,n+1),z,n): end;
  • Mathematica
    a[n_] := Coefficient[Series[ 1/(1 - Sum[z^Prime[j]*Boole[ PrimeQ[Prime[j] - 2] || PrimeQ[ Prime[j] + 2]], {j, 2, n + 2}]), {z, 0, n + 1}], z, n]; Table[a[n], {n, 0, 53}] (* Jean-François Alcover, Nov 09 2012, after Maple *)
  • PARI
    ok(n)={isprime(n) && (isprime(n-2) || isprime(n+2))}
    {my(n=60); Vec(1/(1-sum(k=1, n, if(ok(k), x^k, 0))) + O(x*x^n))} \\ Andrew Howroyd, Dec 28 2017

Formula

G.f.: 1/(1 - Sum_{k>=1} x^A001097(k)). - Andrew Howroyd, Dec 28 2017