A107648 Numbers n such that (10^(2n+1)+63*10^n-1)/9 is prime.
1, 4, 6, 7, 384, 666, 675, 3165, 131020
Offset: 1
Examples
7 is in the sequence because (10^15+63*10^7-1)/9=1(7).8.1(7)=111111181111111 is prime. 666 is in the sequence because (10^(2*666+1)+63*10^666-1)/9=1(666).8.1(666) is prime.
References
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
- Ivan Niven, Herbert S. Zuckerman and Hugh L. Montgomery, An Introduction to the Theory Of Numbers, Fifth Edition, John Wiley and Sons, Inc., NY 1991, p. 141.
Links
- Patrick De Geest, World!Of Numbers, Palindromic Wing Primes (PWP's)
- Makoto Kamada, Prime numbers of the form 11...11811...11
- Index entries for primes involving repunits.
Crossrefs
Programs
-
Mathematica
Do[If[PrimeQ[(10^(2n + 1) + 63*10^n - 1)/9], Print[n]], {n, 4000}]
-
PARI
for(n=0,1e4,if(ispseudoprime(t=(10^(2*n+1)+63*10^n)\9),print1(t", "))) \\ Charles R Greathouse IV, Jul 15 2011
Formula
a(n) = (A077791(n)-1)/2.
Extensions
Edited by Ray Chandler, Dec 28 2010
a(9) from Robert Price, Aug 03 2024
Comments