cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077834 Expansion of 1/(1 - 2*x - 2*x^2 - 3*x^3).

Original entry on oeis.org

1, 2, 6, 19, 56, 168, 505, 1514, 4542, 13627, 40880, 122640, 367921, 1103762, 3311286, 9933859, 29801576, 89404728, 268214185, 804642554, 2413927662, 7241782987, 21725348960, 65176046880, 195528140641, 586584421922, 1759753265766, 5279259797299, 15837779391896
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Programs

Formula

From Paul Barry, May 19 2004: (Start)
Convolution of A000244 and A049347.
G.f.: 1/((1-3*x)(1 + x + x^2)).
a(n) = sum_{k=0..n} (3^k*2*sqrt(3)*cos(2*Pi*(n-k)/3 + Pi/6)/3).
a(n) = 3^(n+2)/13 + 2*sqrt(3)*cos(2*Pi*n/3 + Pi/6)/39 + 2*sqrt(3)*sin(2*Pi*n/3 + Pi/3)/13.
(End)
a(n) = A152733(n+3)/3. - Vladimir Joseph Stephan Orlovsky, Dec 11 2008
a(0)=1, a(1)=2, a(2)=6, a(n) = 2*a(n-1) + 2*a(n-2) + 3*a(n-3). - Harvey P. Dale, Jan 31 2012
a(n) = 1/52*(4*3^(n + 2) + (-1)^n*(2*(-1)^floor(n/3) + 9*(-1)^floor((1 + n)/3) + 6*(-1)^floor((n + 2)/3) + (-1)^floor((n + 4)/3))). - John M. Campbell, Dec 23 2016