cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077864 Expansion of (1-x)^(-1)/(1-x-2*x^2-x^3).

Original entry on oeis.org

1, 2, 5, 11, 24, 52, 112, 241, 518, 1113, 2391, 5136, 11032, 23696, 50897, 109322, 234813, 504355, 1083304, 2326828, 4997792, 10734753, 23057166, 49524465, 106373551, 228479648, 490751216, 1054084064, 2264066145, 4862985490, 10445201845, 22435238971, 48188628152
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Comments

Diagonal sums of triangle using cumulative sums of odd-indexed rows of Pascal's triangle (cf. A020988). - Paul Barry, May 18 2003

Programs

  • Maple
    a := n -> (Matrix([[1,1,0,0], [2,0,1,0], [1,0,0,0], [1,0,0,1]])^(n+1))[4,1]; seq(a(n), n=0..50);  # Alois P. Heinz, Jul 24 2008
  • Mathematica
    CoefficientList[Series[(1-x)^(-1)/(1-x-2x^2-x^3),{x,0,40}],x] (* or *) LinearRecurrence[{2,1,-1,-1},{1,2,5,11},40] (* Harvey P. Dale, Oct 08 2014 *)
  • PARI
    Vec((1-x)^(-1)/(1-x-2*x^2-x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012

Formula

a(0)=1, a(1)=2, a(2)=5, a(3)=11, a(n)=2*a(n-1)+a(n-2)-a(n-3)-a(n-4) for n>3. - Philippe Deléham, Oct 25 2006
a(n) = term (4,1) in the 4x4 matrix [1,1,0,0; 2,0,1,0; 1,0,0,0; 1,0,0,1]^(n+1). - Alois P. Heinz, Jul 24 2008
Conjecture: a(n) = Sum_{j=0..n/2} A027907(n+1-j,2*j+1), n >= 0. - Werner Schulte, Sep 29 2015