cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077882 Expansion of x/((1-x)*(1-x^2-2*x^3)).

Original entry on oeis.org

0, 1, 1, 2, 4, 5, 9, 14, 20, 33, 49, 74, 116, 173, 265, 406, 612, 937, 1425, 2162, 3300, 5013, 7625, 11614, 17652, 26865, 40881, 62170, 94612, 143933, 218953, 333158, 506820, 771065, 1173137, 1784706, 2715268, 4130981, 6284681, 9561518, 14546644, 22130881, 33669681
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Comments

a(n+1) gives diagonal sums of Riordan array (1/(1-x),x*(1+2*x)) and partial sums of A052947. - Paul Barry, Jul 18 2005

Programs

  • Mathematica
    a[0] = 0; a[1] = 1; a[2] = 1; a[3] = 2; a[n_Integer?Positive] := a[n] = a[n - 1] + a[n - 2] + a[n - 3] - 2a[n - 4]; aa = Table[a[n], {n, 0, 42}] (* Roger L. Bagula, Mar 25 2005 *)
    CoefficientList[Series[x/((1-x)(1-x^2-2x^3)),{x,0,50}],x] (* or *) LinearRecurrence[{1,1,1,-2},{0,1,1,2},50] (* Harvey P. Dale, Aug 17 2017 *)

Formula

a(n) = a(n-1)+a(n-2)+a(n-3)-2*a(n-4). - Roger L. Bagula, Mar 25 2005
a(n+1) = Sum_{k=0..n} Sum_{j=0..floor(k/2)} C(j, k-2*j)*2^(k-2*j). - Paul Barry, Jul 18 2005

Extensions

Edited by N. J. A. Sloane, Aug 29 2008 at the suggestion of R. J. Mathar