cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077889 Expansion of 1/( (1-x)*(1 + x^2 + x^3) ).

Original entry on oeis.org

1, 1, 0, -1, 0, 2, 2, -1, -3, 0, 5, 4, -4, -8, 1, 13, 8, -13, -20, 6, 34, 15, -39, -48, 25, 88, 24, -112, -111, 89, 224, 23, -312, -246, 290, 559, -43, -848, -515, 892, 1364, -376, -2255, -987, 2632, 3243, -1644, -5874, -1598, 7519, 7473, -5920, -14991, -1552, 20912, 16544, -19359, -37455, 2816, 56815
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Comments

The Gi1 sums, see A180662 for the definition of these sums, of triangle A101950 equal the terms of this sequence. - Johannes W. Meijer, Aug 06 2011

Crossrefs

Programs

  • GAP
    a:=[1,1,0,-1];; for n in [5..60] do a[n]:=a[n-1]-a[n-2]+a[n-4]; od; a; # G. C. Greubel, Dec 30 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 60); Coefficients(R!( 1/((1-x)*(1+x^2+x^3)) )); // G. C. Greubel, Dec 30 2019
    
  • Maple
    A101950 := proc(n,k) local j,k1: add((-1)^((n-j)/2)*binomial((n+j)/2,j)*(1+(-1)^(n+j))* binomial(j,k)/2, j=0..n) end: A077889 := proc(n): add(A101950(n-3*k,k), k=0..floor(n/4)) end: seq(A077889(n), n=0..60); # Johannes W. Meijer, Aug 06 2011
  • Mathematica
    CoefficientList[Series[1/((1-x)*(1+x^2+x^3)),{x,0,60}],x] (* or *) LinearRecurrence[{1,-1,0,1},{1,1,0,-1},60] (* Harvey P. Dale, Jul 14 2017 *)
  • PARI
    my(x='x+O('x^60)); Vec(1/((1-x)*(1+x^2+x^3))) \\ G. C. Greubel, Dec 30 2019
    
  • Sage
    def A077952_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/((1-x)*(1+x^2+x^3)) ).list()
    A077952_list(60) # G. C. Greubel, Dec 30 2019
    

Formula

a(n) = Sum_{k=0..floor(n/4)} A101950(n-3*k, k).
a(n) = (1 + 2*A077962(n) + 2*A077962(n-1) + A077962(n-2))/3. - G. C. Greubel, Dec 30 2019
a(n)-a(n-1) = A077962(n). - R. J. Mathar, Mar 14 2021