A077912 Expansion of 1/(1+x^2-2*x^3).
1, 0, -1, 2, 1, -4, 3, 6, -11, 0, 23, -22, -23, 68, -21, -114, 157, 72, -385, 242, 529, -1012, -45, 2070, -1979, -2160, 6119, -1798, -10439, 14036, 6843, -34914, 21229, 48600, -91057, -6142, 188257, -175972, -200541, 552486, -151403, -953568, 1256375, 650762, -3163511, 1861988, 4465035
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0, -1, 2).
Crossrefs
Cf. A077963.
Programs
-
GAP
a:=[1,0,-1];; for n in [4..50] do a[n]:=-a[n-2]+2*a[n-3]; od; a; # G. C. Greubel, Jun 23 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 50); Coefficients(R!( 1/(1+x^2-2*x^3) )); // G. C. Greubel, Jun 23 2019 -
Mathematica
CoefficientList[Series[1/(1+x^2-2*x^3),{x,0,50}],x] (* or *) LinearRecurrence[{0,-1,2},{1,0,-1},50] (* Harvey P. Dale, Dec 10 2012 *)
-
PARI
my(x='x+O('x^50)); Vec(1/(1+x^2-2*x^3)) \\ G. C. Greubel, Jun 23 2019
-
Sage
(1/(1+x^2-2*x^3)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Jun 23 2019
Formula
a(0)=1, a(1)=0, a(2)=-1, a(n) = -a(n-2)+2*a(n-3). - Harvey P. Dale, Dec 10 2012
a(n) = (-1)^n * A077963(n). - G. C. Greubel, Jun 23 2019
Comments