A077970 Expansion of 1/(1+x-2*x^2+2*x^3).
1, -1, 3, -7, 15, -35, 79, -179, 407, -923, 2095, -4755, 10791, -24491, 55583, -126147, 286295, -649755, 1474639, -3346739, 7595527, -17238283, 39122815, -88790435, 201512631, -457339131, 1037945263, -2355648787, 5346217575, -12133405675, 27537138399, -62496384899, 141837473047
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (-1, 2, -2).
Programs
-
GAP
a:=[1,1,-3];; for n in [4..40] do a[n]:=-a[n-1]+2*a[n-2]-2*a[n-3]; od; a; # G. C. Greubel, Jun 24 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/(1+x-2*x^2+2*x^3) )); // G. C. Greubel, Jun 24 2019 -
Mathematica
CoefficientList[Series[1/(1+x-2x^2+2x^3),{x,0,40}],x] (* or *) LinearRecurrence[ {-1,2,-2},{1,-1,3},40] (* Harvey P. Dale, Sep 29 2018 *)
-
PARI
Vec(1/(1+x-2*x^2+2*x^3)+O(x^40)) \\ Charles R Greathouse IV, Sep 26 2012
-
Sage
(1/(1+x-2*x^2+2*x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jun 24 2019
Formula
a(n) = (-1)^n*A077946(n). - R. J. Mathar, Feb 28 2019