cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A077940 Expansion of 1/(1-2*x+2*x^3).

Original entry on oeis.org

1, 2, 4, 6, 8, 8, 4, -8, -32, -72, -128, -192, -240, -224, -64, 352, 1152, 2432, 4160, 6016, 7168, 6016, 0, -14336, -40704, -81408, -134144, -186880, -210944, -153600, 66560, 555008, 1417216, 2701312, 4292608, 5750784, 6098944, 3612672, -4276224, -20750336, -48726016, -88899584
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Crossrefs

Cf. A077988.

Programs

  • GAP
    a:=[1,2,4];; for n in [4..50] do a[n]:=2*(a[n-1]-a[n-3]); od; a; # G. C. Greubel, Jun 26 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( 1/(1-2*x+2*x^3) )); // G. C. Greubel, Jun 26 2019
    
  • Mathematica
    LinearRecurrence[{2,0,-2}, {1,2,4}, 50] (* or *) CoefficientList[Series[ 1/(1-2*x+2*x^3), {x,0,50}], x] (* G. C. Greubel, Jun 26 2019 *)
  • PARI
    my(x='x+O('x^50)); Vec(1/(1-2*x+2*x^3)) \\ G. C. Greubel, Jun 26 2019
    
  • Sage
    (1/(1-2*x+2*x^3)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Jun 26 2019
    

Formula

a(n) = (-1)^n * A077988(n). - R. J. Mathar, Feb 04 2014

A124342 Expansion of (1+x)/(1+2x-2x^3).

Original entry on oeis.org

1, -1, 2, -2, 2, 0, -4, 12, -24, 40, -56, 64, -48, -16, 160, -416, 800, -1280, 1728, -1856, 1152, 1152, -6016, 14336, -26368, 40704, -52736, 52736, -24064, -57344, 220160, -488448, 862208, -1284096, 1591296, -1458176, 348160
Offset: 0

Views

Author

Paul Barry, Oct 26 2006

Keywords

Comments

Diagonal sums of A124341. Binomial transform has g.f. (1-x)/(1-x-x^2-x^3).

Formula

a(n)=sum{k=0..floor(n/2), sum{j=0..n-k, (-1)^(n-k-j)*C(n-k,j)*C(k,j-k)}}
a(n) = (-1)^(n+1)*A073358(n+1). - R. J. Mathar, Feb 04 2014
a(n) = A077988(n-1)+A077988(n). - R. J. Mathar, Jan 25 2016

A078060 Expansion of (1-x)/(1+2*x-2*x^3).

Original entry on oeis.org

1, -3, 6, -10, 14, -16, 12, 4, -40, 104, -200, 320, -432, 464, -288, -288, 1504, -3584, 6592, -10176, 13184, -13184, 6016, 14336, -55040, 122112, -215552, 321024, -397824, 364544, -87040, -621568, 1972224, -4118528, 6993920, -10043392, 11849728, -9711616, -663552, 25026560
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Programs

  • Mathematica
    CoefficientList[Series[(1-x)/(1+2x-2x^3),{x,0,60}],x] (* or *) LinearRecurrence[{-2,0,2},{1,-3,6},60] (* Harvey P. Dale, Aug 20 2021 *)

Formula

a(n) = A077988(n)-A077988(n-1). - R. J. Mathar, Mar 19 2025
Showing 1-3 of 3 results.