cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078007 Expansion of (1-x)/(1-x-2*x^2-x^3).

Original entry on oeis.org

1, 0, 2, 3, 7, 15, 32, 69, 148, 318, 683, 1467, 3151, 6768, 14537, 31224, 67066, 144051, 309407, 664575, 1427440, 3065997, 6585452, 14144886, 30381787, 65257011, 140165471, 301061280, 646649233, 1388937264, 2983297010, 6407820771, 13763352055, 29562290607
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Comments

Let X = the 3x3 matrix [0,1,0; 0,0,1; 1,2,1]. a(n) = center term of X^n; but A002478(n) = term (3,3) of X^n. - Gary W. Adamson, May 30 2008
First bisection of A058278. - Oboifeng Dira, Aug 04 2016

Crossrefs

First differences of A002478.
Cf. A058278.

Programs

  • GAP
    a:=[1,0,2];; for n in [4..40] do a[n]:=a[n-1]+2*a[n-2]+a[n-3]; od; a; # G. C. Greubel, Jun 28 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x)/(1-x-2*x^2-x^3) )); // G. C. Greubel, Jun 28 2019
    
  • Mathematica
    LinearRecurrence[{1,2,1}, {1,0,2}, 40] (* or *) CoefficientList[Series[(1 -x)/(1-x-2*x^2-x^3), {x,0,40}], x] (* G. C. Greubel, Jun 28 2019 *)
  • PARI
    Vec((1-x)/(1-x-2*x^2-x^3)+O(x^40)) \\ Charles R Greathouse IV, Sep 26 2012
    
  • Sage
    ((1-x)/(1-x-2*x^2-x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jun 28 2019
    

Formula

a(n) = a(n-1) + 2*a(n-2) + a(n-3). - Ilya Gutkovskiy, Aug 06 2016