cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078113 Let u(1)=u(2)=1, u(3)=n, u(k) = (1/2)*abs(2*u(k-1) -u(k-2)-u(k-3)); sequence gives values of n such that Sum_{k>=1} u(k) is an integer.

Original entry on oeis.org

2, 6, 7, 15, 17, 33, 37, 69, 77, 141, 157, 285, 317, 573, 637, 1149, 1277, 2301, 2557, 4605, 5117, 9213, 10237, 18429, 20477, 36861, 40957, 73725, 81917, 147453, 163837, 294909, 327677, 589821, 655357, 1179645, 1310717, 2359293, 2621437, 4718589, 5242877
Offset: 1

Views

Author

Benoit Cloitre, Dec 04 2002

Keywords

Comments

u(3)=7, Sum_{k>=1} u(k) = 28 is an integer, hence 7 is in the sequence.

Crossrefs

Programs

  • PARI
    A078113(maxn, maxk) = {
      u=vector(maxk);
      u[1]=1; u[2]=1;
      for(n=1, maxn,
        u[3]=n;
        for(k=4, maxk, u[k]=abs(2*u[k-1]-u[k-2]-u[k-3])/2);
        s=sum(i=1, maxk, u[i]);
        if(ceil(s)-s < 1E-11, print1(n, ", ")) \\ Arbitrary 1E-11
      )
    }
    A078113(1000000, 200) \\ Colin Barker, Aug 14 2013

Formula

Conjecture: a(n) = -3+2^(1/2*(-5+n))*(10-10*(-1)^n+9*sqrt(2)+9*(-1)^n*sqrt(2)). a(n) = a(n-1)+2*a(n-2)-2*a(n-3). G.f.: x*(3*x^2-4*x-2) / ((x-1)*(2*x^2-1)). - Colin Barker, Aug 14 2013
Conjecture: a(n) = 2*a(n-2) + 3, n odd>2 = A154117((n+1)/2). - Bill McEachen, Jun 21 2025

Extensions

a(11)-a(33) from Colin Barker, Aug 14 2013
a(34)-a(41) from Bill McEachen, Jun 21 2025