A078113 Let u(1)=u(2)=1, u(3)=n, u(k) = (1/2)*abs(2*u(k-1) -u(k-2)-u(k-3)); sequence gives values of n such that Sum_{k>=1} u(k) is an integer.
2, 6, 7, 15, 17, 33, 37, 69, 77, 141, 157, 285, 317, 573, 637, 1149, 1277, 2301, 2557, 4605, 5117, 9213, 10237, 18429, 20477, 36861, 40957, 73725, 81917, 147453, 163837, 294909, 327677, 589821, 655357, 1179645, 1310717, 2359293, 2621437, 4718589, 5242877
Offset: 1
Programs
-
PARI
A078113(maxn, maxk) = { u=vector(maxk); u[1]=1; u[2]=1; for(n=1, maxn, u[3]=n; for(k=4, maxk, u[k]=abs(2*u[k-1]-u[k-2]-u[k-3])/2); s=sum(i=1, maxk, u[i]); if(ceil(s)-s < 1E-11, print1(n, ", ")) \\ Arbitrary 1E-11 ) } A078113(1000000, 200) \\ Colin Barker, Aug 14 2013
Formula
Conjecture: a(n) = -3+2^(1/2*(-5+n))*(10-10*(-1)^n+9*sqrt(2)+9*(-1)^n*sqrt(2)). a(n) = a(n-1)+2*a(n-2)-2*a(n-3). G.f.: x*(3*x^2-4*x-2) / ((x-1)*(2*x^2-1)). - Colin Barker, Aug 14 2013
Conjecture: a(n) = 2*a(n-2) + 3, n odd>2 = A154117((n+1)/2). - Bill McEachen, Jun 21 2025
Extensions
a(11)-a(33) from Colin Barker, Aug 14 2013
a(34)-a(41) from Bill McEachen, Jun 21 2025
Comments