cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078121 Infinite lower triangular matrix, M, that satisfies [M^2](i,j) = M(i+1,j+1) for all i,j>=0 where [M^n](i,j) denotes the element at row i, column j, of the n-th power of matrix M, with M(0,k)=1 and M(k,k)=1 for all k>=0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 10, 16, 8, 1, 1, 36, 84, 64, 16, 1, 1, 202, 656, 680, 256, 32, 1, 1, 1828, 8148, 10816, 5456, 1024, 64, 1, 1, 27338, 167568, 274856, 174336, 43680, 4096, 128, 1, 1, 692004, 5866452, 11622976, 8909648, 2794496, 349504, 16384, 256, 1
Offset: 0

Views

Author

Paul D. Hanna, Nov 18 2002

Keywords

Comments

M also satisfies: [M^(2k)](i,j) = [M^k](i+1,j+1) for all i,j,k>=0; thus [M^(2^n)](i,j) = M(i+n,j+n) for all n>=0.

Examples

			The square of the matrix is the same matrix excluding the first row and column:
  [1, 0, 0, 0, 0]^2 = [ 1, 0, 0, 0, 0]
  [1, 1, 0, 0, 0]     [ 2, 1, 0, 0, 0]
  [1, 2, 1, 0, 0]     [ 4, 4, 1, 0, 0]
  [1, 4, 4, 1, 0]     [10,16, 8, 1, 0]
  [1,10,16, 8, 1]     [36,84,64,16, 1]
		

Crossrefs

Programs

  • Maple
    M:= proc(i, j) option remember; `if`(j=0 or i=j, 1,
           add(M(i-1, k)*M(k, j-1), k=0..i-1))
        end:
    seq(seq(M(n,k), k=0..n), n=0..10);  # Alois P. Heinz, Feb 27 2015
  • Mathematica
    rows = 10; M[k_] := Table[ Which[j == 1, 1, i == j, 1, 1 < j < i, m[i, j], True, 0], {i, 1, k}, {j, 1, k}]; m2[i_, j_] := m[i+1, j+1]; M2[k_] := Table[ Which[jJean-François Alcover, Feb 27 2015 *)
    M[i_, j_] := M[i, j] = If[j == 0 || i == j, 1, Sum[M[i-1, k]*M[k, j-1], {k, 0, i-1}]]; Table[Table[M[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 27 2015, after Alois P. Heinz *)
  • PARI
    rows_upto(n) = my(A, v1); v1 = vector(n+1, i, vector(i, j, 0)); v1[1][1] = 1; for(i=1, n, v1[i+1][1] = 1; v1[i+1][i+1] = 1); for(i=2, n, for(j=1, i-1, A = (i+j+1)%2; v1[i+1][j+1] = 2*sum(k=0, (i-j-1)\2, v1[i-j+1][2*k+A+1]*v1[j+2*k+A+1][j]))); v1 \\ Mikhail Kurkov, Aug 27 2025

Formula

M(1,j) = A002577(j) (partitions of 2^j into powers of 2), M(j+1,j) = 2^j, M(j+2,j) = 4^j, M(j+3,j) = A016131(j).
M(n,k) = the coefficient of x^(2^n - 2^(n-k)) in the power series expansion of 1/Product_{j=0..n-k} (1-x^(2^j)) whenever 0<=k0 (conjecture).
M(n,k) = Sum_{j=0..n-k-1} M(n-k,j)*M(k+j,k-1)*(1+(-1)^(n+k+j+1)) for 0 < k < n with M(n,0) = M(n,n) = 1. - Mikhail Kurkov, Jun 01 2025
From Mikhail Kurkov, Jul 01 2025: (Start)
Conjecture 1: let R(n,x) be the n-th row polynomial, then R(n,x) = x*R(n-1,x) + Sum_{k=1..n-1} M(n-1,k-1)*R(k,x)*(-1)^(n+k+1) = R(n-1,x) + x*Sum_{k=1..n-1} (M(n-1,k) - M(n-2,k))*R(k,x) for n > 1 with R(0,x) = 1, R(1,x) = x + 1.
Conjecture 2: M(n+m,n) ~ 2^(m*(2*n+m-1)/2)/m! as n -> oo. More generally, it also looks like that M(n+m,n) for m > 0 can be represented as (Sum_{j=0..flooor((m-1)/2)} 2^((m-2*j)*(2*(n-j)+m-1)/2)*P(m,j)*(-1)^j)/m! where P(m,j) are some positive integer coefficients. (End)