A078123 Square of infinite lower triangular matrix A078122.
1, 2, 1, 5, 6, 1, 23, 51, 18, 1, 239, 861, 477, 54, 1, 5828, 32856, 25263, 4347, 162, 1, 342383, 3013980, 3016107, 699813, 39285, 486, 1, 50110484, 690729981, 865184724, 253656252, 19053063, 354051, 1458, 1, 18757984046, 406279238154
Offset: 0
Examples
Square of A078122 = A078123 as can be seen by 4 X 4 submatrix: [1,_0,_0,0]^2=[_1,_0,_0,_0] [1,_1,_0,0]___[_2,_1,_0,_0] [1,_3,_1,0]___[_5,_6,_1,_0] [1,12,_9,1]___[23,51,18,_1]
Links
- Alois P. Heinz, Rows n = 0..60, flattened
Programs
-
Maple
S:= proc(i, j) option remember; add(M(i, k)*M(k, j), k=0..i) end: M:= proc(i, j) option remember; `if`(j=0 or i=j, 1, add(S(i-1, k)*M(k, j-1), k=0..i-1)) end: seq(seq(S(n,k), k=0..n), n=0..10); # Alois P. Heinz, Feb 27 2015
-
Mathematica
S[i_, j_] := S[i, j] = Sum[M[i, k]*M[k, j], {k, 0, i}]; M[i_, j_] := M[i, j] = If[j == 0 || i == j, 1, Sum[S[i-1, k]*M[k, j-1], {k, 0, i-1}]]; Table[Table[S[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Mar 06 2015, after Alois P. Heinz *)
Formula
M(1, j) = A078125(j), M(j+1, j)=2*3^j.