A078144 Starts for strings of at least five consecutive nonsquarefree numbers.
844, 1680, 2888, 3624, 5046, 10924, 14748, 15848, 17404, 19940, 22020, 22021, 22624, 23272, 24647, 24648, 25772, 29348, 30248, 30923, 30924, 33172, 36700, 37248, 38724, 39444, 40472, 45372, 47672, 47673, 47724, 47824, 48372, 49488
Offset: 1
Keywords
Examples
Squares dividing 5-string=844+j, j=0,..,4 are as follows:4,169,9,121,16 resp. Each term initiates an arithmetic progression with suitable large difference. Such progressions are constructible by solving suitable linear Diophantine equations. E.g., quintet = {m*k+3689649, m*k+3689650, m*k+3689651, m*k+3689652, m*k+3689653} = {9*(592900*k+409961), 25*(213444*k+147586), 49*(108900*k+75299), 4*(1334025*k+922413), 121*(44100*k+30493)}; m=2310*2310=A002110(5)^2=A061742(5)=5336100.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
s5[x_] := Total[Table[Abs[MoebiusMu[x + j]], {j, 0, 4}]] == 0; Select[Range[50000], s5] Flatten[Position[Partition[SquareFreeQ/@Range[60000],5,1],?(Union[#] == {False}&),{1},Heads->False]] (* _Harvey P. Dale, May 24 2014 *) SequencePosition[Table[If[SquareFreeQ[n],0,1],{n,50000}],{1,1,1,1,1}][[All,1]] (* Harvey P. Dale, Oct 16 2022 *)
Formula
a(n) = A188296(n) - 2. - Amiram Eldar, Feb 09 2021