A385122 a(n) = d(phi(n)) - phi(d(n)) where d(n) = A000005(n) is the number of divisors and phi(n) = A000010(n) is the Euler totient function.
0, 0, 1, 0, 2, 0, 3, 1, 2, 1, 3, 1, 5, 2, 2, 0, 4, 2, 5, 2, 4, 2, 3, 0, 4, 4, 4, 4, 5, 0, 7, 3, 4, 3, 6, 0, 8, 4, 6, 1, 7, 2, 7, 4, 6, 2, 3, 1, 6, 4, 4, 6, 5, 2, 6, 4, 7, 4, 3, 1, 11, 6, 7, 0, 8, 2, 7, 4, 4, 4, 7, 4, 11, 7, 6, 7, 10, 4, 7, 2, 4, 6, 3, 4, 5, 6
Offset: 1
Keywords
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
A385122[n_] := DivisorSigma[0, EulerPhi[n]] - EulerPhi[DivisorSigma[0, n]]; Array[A385122, 100] (* Paolo Xausa, Jun 19 2025 *)
-
PARI
a(n) = numdiv(eulerphi(n)) - eulerphi(numdiv(n)); \\ Michel Marcus, Jun 19 2025
Comments