cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078341 Triangle read by rows: T(n,k) = n*T(n-1,k-1) + k*T(n-1,k) starting with T(0,0)=1.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 7, 6, 0, 1, 18, 46, 24, 0, 1, 41, 228, 326, 120, 0, 1, 88, 930, 2672, 2556, 720, 0, 1, 183, 3406, 17198, 31484, 22212, 5040, 0, 1, 374, 11682, 96040, 295004, 385144, 212976, 40320, 0, 1, 757, 38412, 489298, 2339380, 4965900
Offset: 1

Views

Author

F. Chapoton, Nov 22 2002

Keywords

Comments

Triangle of coefficients of polynomials P[n]. Let F(t) satisfy dF/dt = exp(x*(exp(F)-1)) and F(0)=0. Then F(t) = Sum_{n>=0} P[n]/n! t^n, where P[n] is a polynomial in x of degree n-1. The constant term of the polynomial is zero for n >= 2. The coefficient of x is 1 for n >= 2. The coefficient of x^n in P[n+1] is n!. The value at 1 is given by sequence A007549.

Examples

			P[1]=1, P[2]=x, P[3]=x+2*x^2, P[4]=x+7*x^2+6*x^3, P[5]=x+18*x^2+46*x^3+24*x^4, P[6]=x+41*x^2+228*x^3+326*x^4+120*x^5.
Rows start 1; 0,1; 0,1,2; 0,1,7,6; 0,1,18,46,24; 0,1,41,228,326,120; ...
		

Crossrefs

Columns include A000007, A057427, A095151, A103768. Diagonals include A000142, A067318. Row sums are A007549.

Programs

  • Maple
    P[1] := 1; for n from 1 to 10 do P[n+1] := expand(x*diff(P[n],x)+x*n*P[n]) od;
  • Mathematica
    p[1][x_] = 1; p[n_][x_] := x*p[n-1]'[x] + x*(n-1)*p[n-1][x]; Table[ CoefficientList[ p[n][x], x], {n, 1, 10}] // Flatten (* Jean-François Alcover, Jan 29 2013 *)

Formula

P[1]=1; P[n+1] = x*(d/dx)P[n] + x*n*P[n].

Extensions

Additional comments from Henry Bottomley, Feb 15 2005