cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078349 Number of primes in sequence h(m) defined by h(1) = n, h(m+1) = Floor(h(m)/2).

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 2, 1, 1, 2, 3, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 3, 4, 1, 1, 2, 2, 2, 3, 2, 3, 1, 1, 2, 2, 1, 2, 2, 2, 2, 3, 2, 3, 3, 3, 4, 5, 1, 1, 1, 1, 2, 3, 2, 2, 2, 2, 3, 4, 2, 3, 3, 3, 1, 1, 1, 2, 2, 2, 2, 3, 1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 4, 2, 2, 3, 3, 3, 4, 3, 3, 4, 4, 5, 5, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Joseph L. Pe, Dec 23 2002

Keywords

Examples

			The sequence h(m) for n = 5 is 5, 2, 1, 0, 0, 0, ...., in which two terms are primes. Therefore a(5) = 2.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Module[{i, p}, i = n; p = 0; While[i > 1, If[PrimeQ[i], p = p + 1]; i = Floor[i/2]]; p]; Table[f[i], {i, 1, 100}]
  • PARI
    A078349(n) = if(1==n,0,isprime(n)+A078349(n\2)); \\ Antti Karttunen, Oct 01 2017

Formula

From Antti Karttunen, Oct 01 2017: (Start)
a(1) = 0; for n > 1, a(n) = A010051(n) + a(floor(n/2)).
a(n) = A000120(A292599(n)).
a(n) = A007814(A292258(n)).
a(n) >= A292598(n).
a(n) >= A292936(n).
(End)