cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A092790 a(n) = (n+1)*phi(n-1)/2.

Original entry on oeis.org

2, 5, 6, 14, 8, 27, 20, 33, 24, 65, 28, 90, 48, 68, 72, 152, 60, 189, 88, 138, 120, 275, 104, 270, 168, 261, 180, 434, 128, 495, 272, 350, 288, 444, 228, 702, 360, 492, 336, 860, 264, 945, 460, 564, 528, 1127, 400, 1071, 520, 848, 648, 1430, 504, 1140, 696, 1062, 840, 1769
Offset: 3

Views

Author

N. J. A. Sloane, Nov 04 2008

Keywords

Comments

[The old entry with this sequence number was a duplicate of A082470.]
Prepending [0, 3] and setting offset = 0 the sequence becomes the row sums of A378068. - Peter Luschny, Dec 27 2024
a(n) is the sum of row n-1 of A078401. - Amiram Eldar, May 12 2025

Crossrefs

Cf. A000010 (phi), A078401, A378068.

Programs

  • Mathematica
    Table[(n+1) EulerPhi[n-1]/2,{n,3,60}] (* Harvey P. Dale, Apr 22 2012 *)
  • PARI
    a(n) = (n+1)*eulerphi(n-1)/2; \\ Michel Marcus, Sep 18 2017

A275257 Array read by upwards antidiagonals: LegendrePhi phi(x,n), x,n >=1.

Original entry on oeis.org

1, 2, 1, 3, 1, 1, 4, 2, 2, 1, 5, 2, 2, 1, 1, 6, 3, 3, 2, 2, 1, 7, 3, 4, 2, 3, 1, 1, 8, 4, 4, 3, 4, 1, 2, 1, 9, 4, 5, 3, 4, 1, 3, 1, 1, 10, 5, 6, 4, 5, 2, 4, 2, 2, 1, 11, 5, 6, 4, 6, 2, 5, 2, 2, 1, 1, 12, 6, 7, 5, 7, 3, 6, 3, 3, 2, 2, 1, 13, 6
Offset: 1

Views

Author

R. J. Mathar, Jul 21 2016

Keywords

Examples

			Upper left corner of array begins
   1 1 1 1 1 1 1 1 1 1 ...
   2 1 2 1 2 1 2 1 2 1 ...
   3 2 2 2 3 1 3 2 2 2 ...
   4 2 3 2 4 1 4 2 3 2 ...
   5 3 4 3 4 2 5 3 4 2 ...
   6 3 4 3 5 2 6 3 4 2 ...
   7 4 5 4 6 3 6 4 5 3 ...
   8 4 6 4 7 3 7 4 6 3 ...
   9 5 6 5 8 3 8 5 6 4 ...
  10 5 7 5 8 3 9 5 7 4 ...
		

Crossrefs

Partial sums of A054431. Cf. A078401 (upper right triangle).

Programs

  • Maple
    A275257 := proc(x,n)
        local a,k ;
        a :=0 ;
        for k from 1 to x do
            if igcd(k,n) = 1 then
                a := a+1 ;
            end if;
        end do:
        a ;
    end proc:
    seq(seq(A275257(d-n,n),n=1..d-1),d=2..15) ;
  • Mathematica
    With[{nn = 14}, Table[#[[k, n - k + 1]], {n, nn - 1}, {k, n}] &@ Map[Accumulate, Table[Boole@ CoprimeQ[k, n], {n, nn}, {k, nn - n}]]] // Flatten (* Michael De Vlieger, Jan 09 2018 *)
  • Ruby
    def a(x, n); (1..x).count { |k| k.gcd(n) == 1 } end
    # Peter Kagey, Jan 08 2018

Formula

phi(x,n) = Sum_{k=1..x} A054431(k,n).
phi(n,n) = A000010(n).
Showing 1-2 of 2 results.