A078412 a(0) = 5, a(1) = 8; for n >1, a(n)=(a(n-1)+a(n-2))/3^n, where 3^n is the highest power of 3 dividing a(n-1)+a(n-2).
5, 8, 13, 7, 20, 1, 7, 8, 5, 13, 2, 5, 7, 4, 11, 5, 16, 7, 23, 10, 11, 7, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,1).
Programs
-
Mathematica
Join[{5, 8, 13, 7, 20, 1, 7, 8, 5, 13, 2, 5, 7, 4, 11, 5, 16, 7, 23, 10, 11, 7},LinearRecurrence[{0, 0, 1},{2, 1, 1},79]] (* Ray Chandler, Aug 25 2015 *)
Formula
a(3n-1)=2, a(3n)=1, a(3n+1)=1 for n>=8. - Sascha Kurz, Jan 04 2003
Extensions
More terms from Sascha Kurz, Jan 04 2003