A078440 Numbers n with property that n is not a power of 2 and the finite sequence n, f(n), f(f(n)), ...., 1 in the Collatz (or 3x + 1) problem contains exactly one prime. (The earliest "1" is meant.)
21, 42, 84, 85, 168, 170, 336, 340, 341, 453, 672, 680, 682, 906, 909, 1344, 1360, 1364, 1365, 1812, 1813, 1818, 2688, 2720, 2728, 2730, 3624, 3626, 3636, 5376, 5440, 5456, 5460, 5461, 7248, 7252, 7272, 7281, 9669
Offset: 1
Keywords
Examples
n, f(n), f(f(n)), .... for n = 21 is: 21, 64, 32, 16, 8, 4, 2, 1, which has exactly one prime, that is, 2. Hence 21 belongs to the sequence.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Collatz Problem
- Wikipedia, Collatz conjecture
- Index entries for sequences related to 3x+1 (or Collatz) problem
Programs
-
Haskell
a078440 n = a078440_list !! (n-1) a078440_list = filter notbp a196871_list where notbp x = m > 0 && x > 1 || m == 0 && notbp x' where (x',m) = divMod x 2 -- Reinhard Zumkeller, Oct 08 2011
-
Mathematica
f[n_] := n/2 /; Mod[n, 2] == 0 f[n_] := 3 n + 1 /; Mod[n, 2] == 1 g[n_] := Module[{i, p}, i = n; p = 0; While[i > 1, If[PrimeQ[i], p = p + 1]; i = f[i]]; p]; Select[Range[10^4], g[ # ] == 1 && ! IntegerQ[Log[2, # ]] &] pQ[n_]:=Count[NestWhileList[If[EvenQ[#],#/2,3#+1]&,n, #>1&], ?PrimeQ] == 1; With[ {nn=10000},Complement[Select[Range[nn],pQ],2^Range[Floor[ Log[ 2,nn]]]]] (* _Harvey P. Dale, Oct 19 2011 *)
Comments