A078441 a(n) begins the first chain of n consecutive positive integers that have equal h-values, where h(k) is the length of the finite sequence k, f(k), f(f(k)), ...., 1 in the Collatz (or 3x + 1) problem. (The earliest "1" is meant.)
1, 12, 28, 98, 98, 386, 943, 1494, 1680, 2987, 2987, 2987, 2987, 2987, 7083, 7083, 7083, 57346, 57346, 57346, 57346, 57346, 57346, 57346, 57346, 252548, 252548, 331778, 331778, 524289, 596310, 596310, 596310, 596310, 596310, 596310, 596310, 596310, 596310, 596310, 2886352, 3247146, 3247146, 3247146, 3247146, 3247146, 3247146, 3264428, 3264428, 3264428, 3264428, 3264428, 4585418, 4585418
Offset: 1
Keywords
Examples
28, 29, 30 is the first chain of three consecutive positive integers n, n+1, n+2 such that h(n) = h(n+1) = h(n+2). Hence a(3)=28.
Links
- Karl-Heinz Hofmann, Table of n, a(n) for n = 1..255
Programs
-
Mathematica
t = Differences@ Table[Length@ NestWhileList[If[EvenQ@ #, #/2, 3 # + 1] &, n, # != 1 &], {n, 10^5}]; {1}~Join~Table[SequencePosition[t, ConstantArray[0, n - 1]][[1, 1]], {n, 2, 25}] (* Michael De Vlieger, Sep 14 2016, Version 10.1 *)
Extensions
More terms from Michel ten Voorde Jun 20 2003
a(18)-a(21) corrected and a(22)-a(54) from Donovan Johnson, Nov 14 2010
a(1)=1 prepended by Dmitry Kamenetsky, Sep 14 2016
Comments