A078442 a(p) = a(n) + 1 if p is the n-th prime, prime(n); a(n)=0 if n is not prime.
0, 1, 2, 0, 3, 0, 1, 0, 0, 0, 4, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 5, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 3, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0
Offset: 1
Keywords
Examples
a(1) = 0 since 1 is not prime; a(2) = a(prime(1)) = a(1) + 1 = 1 + 0 = 1; a(3) = a(prime(2)) = a(2) + 1 = 1 + 1 = 2; a(4) = 0 since 4 is not prime; a(5) = a(prime(3)) = a(3) + 1 = 2 + 1 = 3; a(6) = 0 since 6 is not prime; a(7) = a(prime(4)) = a(4) + 1 = 0 + 1 = 1.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- N. Fernandez, An order of primeness, F(p)
- N. Fernandez, An order of primeness [cached copy, included with permission of the author]
- Index entries for sequences related to Matula-Goebel numbers
Programs
-
Haskell
a078442 n = fst $ until ((== 0) . snd) (\(i, p) -> (i + 1, a049084 p)) (-2, a000040 n) -- Reinhard Zumkeller, Jul 14 2013
-
Maple
A078442 := proc(n) if not isprime(n) then 0 ; else 1+procname(numtheory[pi](n)) ; end if; end proc: # R. J. Mathar, Jul 07 2012
-
Mathematica
a[n_] := a[n] = If[!PrimeQ[n], 0, 1+a[PrimePi[n]]]; Array[a, 105] (* Jean-François Alcover, Jan 26 2018 *)
-
PARI
A078442(n)=for(i=0,n, isprime(n) || return(i); n=primepi(n)) \\ M. F. Hasler, Mar 09 2010
Formula
a(n) = A049076(n)-1.
Comments