A108808
Number of compositions of grid graph G_{3,n} = P_3 X P_n.
Original entry on oeis.org
4, 74, 1434, 27780, 538150, 10424872, 201947094, 3912050356, 75782907270, 1468040672696, 28438383992230, 550898690444420, 10671821831261942, 206730898391393192, 4004720564629102582, 77578083032366404308, 1502816206487087179878, 29112043791259796460440
Offset: 1
- Reddy, V. and Skiena, S. "Frequencies of Large Distances in Integer Lattices." Technical Report, Department of Computer Science. Stony Brook, NY: State University of New York, Stony Brook, 1989. [Background]
- Skiena, S. "Grid Graphs." Section 4.2.4 in Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, pp. 147-148, 1990. [Background]
- Robert Israel, Table of n, a(n) for n = 1..769
- J. N. Ridley and M. E. Mays, Compositions of unions of graphs, Fib. Quart. 42 (2004), 222-230.
- Frank Simon, Algebraic Methods for Computing the Reliability of Networks, Dissertation, Doctor Rerum Naturalium (Dr. rer. nat.), Fakultät Mathematik und Naturwissenschaften der Technischen Universität Dresden, 2012, Table 6.12. - From _N. J. A. Sloane_, Jan 04 2013
- Eric Weisstein's World of Mathematics, Grid Graph. [Background]
- Index entries for linear recurrences with constant coefficients, signature (23,-75,91,6,-4).
-
z:= <1|1|1|1|1|1>: w:= <1,1,0,1,0,1>:
M:= Matrix([[ 2, 3, 3, 3, 4, 5 ],
[ 3, 4, 5, 5, 6, 6 ],
[ 1, 0, 2, 0, 0, 0 ],
[ 3, 5, 5, 4, 6, 6 ],
[ 2, 1, 4, 1, 2, 0 ],
[ 2, 5, 2, 5, 6, 8 ]]):
seq(z . M^i . w, i=0..31); # Robert Israel, Dec 03 2015
a(4) corrected and a(5)-a(7) computed by
Brian Kell, May 20 2008
a(12)-a(18) added from Frank Simon's thesis by
N. J. A. Sloane, Jan 04 2013
A110476
Table of number of partitions of an m X n rectangle, read by descending antidiagonals.
Original entry on oeis.org
1, 2, 2, 4, 12, 4, 8, 74, 74, 8, 16, 456, 1434, 456, 16, 32, 2810, 27780, 27780, 2810, 32, 64, 17316, 538150, 1691690, 538150, 17316, 64, 128, 106706, 10424872, 103015508, 103015508, 10424872, 106706, 128, 256, 657552, 201947094, 6273056950
Offset: 1
Array A(m,n) (with rows m >= 1 and columns n >= 1) begins
1, 2, 4, 8, 16, 32, 64, 128, ...
2, 12, 74, 456, 2810, 17316, 106706, ...
4, 74, 1434, 27780, 538150, 10424872, ...
8, 456, 27780, 1691690, 103015508, ...
16, 2810, 538150, 103015508, ...
32, 17316, 10424872, ...
64, 106706, ...
128, ...
...
- Walter Trump, Table of n, a(n) for n = 1..220 (first 40 terms from Hugo van der Sanden).
- Brian Kell, Values for m+n < 16 [except (7,7), (7,8) and (8,7)]
- A. Knopfmacher and M. E. Mays, Graph compositions I: Basic enumeration, Integers, 1 (2001), 1-11. [From _Brian Kell_, Oct 21 2008]
- Yulka Lipkova, Miso Forisek, Tom Zathurecky, and Davidko Pal, Delicious cake. [From _Brian Kell_, Oct 21 2008]
- J. N. Ridley and M. E. Mays, Compositions of unions of graphs, Fib. Quart., 42 (2004), 222-230. [From _Brian Kell_, Oct 21 2008]
- Frank Simon, Algebraic Methods for Computing the Reliability of Networks, Dissertation, Doctor Rerum Naturalium (Dr. rer. nat.), Fakultät Mathematik und Naturwissenschaften der Technischen Universität Dresden, 2012. - From _N. J. A. Sloane_, Jan 04 2013
- F. Simon, P. Tittmann and M. Trinks, Counting Connected Set Partitions of Graphs, Electron. J. Combin., 18(1) (2010), #P14, 12pp.
Corrected by Chuck Carroll (chuck(AT)chuckcarroll.org), Jun 06 2006
Original entry on oeis.org
1, 1, 3, 3, 7, 7, 17, 17, 41, 41, 99, 99, 239, 239, 577, 577, 1393, 1393, 3363, 3363, 8119, 8119, 19601, 19601, 47321, 47321, 114243, 114243, 275807, 275807, 665857, 665857, 1607521, 1607521, 3880899, 3880899, 9369319, 9369319, 22619537, 22619537, 54608393
Offset: 1
The pieces illustrating a(3) = 3 are:
AAA BB. .CC
AAA .BB CC.
A152124
Number of partitions of a 2 x n rectangle into connected pieces consisting of unit squares cut along lattice lines (like a 2-d analog of a partition into integers) in which each piece has rotational symmetry.
Original entry on oeis.org
1, 2, 8, 36, 162, 746, 3420, 15738, 72352, 332850, 1530928, 7042422, 32394478, 149015678, 685471704, 3153185542, 14504703924, 66721946584, 306922286796, 1411848979422, 6494534685710, 29874996141112, 137425609255358, 632160693109496, 2907952479953454
Offset: 0
Example: the partitions comprising a(2)=8 are:
AA AA AB AA AB BC BA AB
AA BB AB BC AC AA CA CD
I.e., exactly those of A078469(2)=12 except for the 4 rotations of the one partition that includes an asymmetric piece:
AA
AB
A264841
Triangle read by rows: T(n,k) is the number of ways to partition an n X k square grid into any number of parts along the gridlines.
Original entry on oeis.org
1, 2, 12, 4, 74, 1442, 8, 456, 28028, 1716098, 16, 2810, 544844, 105093828, 20276816980, 32, 17316, 10591310, 6435880414, 3912156203494, 2378025136264102, 64, 106706, 205886234, 394129505248, 754801786191820, 1445496758320387318, 2768227968406304217000, 128, 657552, 4002256640, 24136256828880
Offset: 1
The triangle T(n,k) begins:
n\k 1 2 3 4 5
1: 1
2: 2 12
3: 4 74 1442
4: 8 456 28028 1716098
5: 16 2810 544844 105093828 20276816980
A078469 is the second column of this triangle.
Showing 1-5 of 5 results.
Comments