cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078480 Number of permutations p of {1,2,...,n} such that |p(i)-i| != 1 for all i.

Original entry on oeis.org

1, 1, 1, 2, 5, 21, 117, 792, 6205, 55005, 543597, 5922930, 70518905, 910711193, 12678337945, 189252400480, 3015217932073, 51067619064873, 916176426422089, 17355904144773970, 346195850534379613, 7252654441500887309
Offset: 0

Views

Author

Vladeta Jovovic, Jan 03 2003

Keywords

Comments

For positive n, a(n) equals the permanent of the n X n matrix with 0's along the superdiagonal and the subdiagonal, and 1's everywhere else. [John M. Campbell, Jul 09 2011]

Crossrefs

Column k=0 of A320582.
Column k=1 of A306512.

Programs

  • Mathematica
    (* Explicit formula: *) Table[Sum[Sum[(-1)^k*(i-k)!*Binomial[2i-k,k],{k,0,i}],{i,0,n}],{n,0,21}] (* Vaclav Kotesovec, Mar 28 2011 *)

Formula

G.f.: 1/(1-x^2)*Sum_{n>=0} n!*(x/(1+x)^2)^n. - Vladeta Jovovic, Jun 26 2007
Asymptotic (N. S. Mendelsohn, 1956): a(n)/n! -> 1/e^2
Recurrence: a(n) = n*a(n-1) - (n-2)*a(n-3) - a(n-4), for n>=5