A306512
Number A(n,k) of permutations p of [n] having no index i with |p(i)-i| = k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 9, 1, 1, 2, 3, 5, 44, 1, 1, 2, 6, 9, 21, 265, 1, 1, 2, 6, 14, 34, 117, 1854, 1, 1, 2, 6, 24, 53, 176, 792, 14833, 1, 1, 2, 6, 24, 78, 265, 1106, 6205, 133496, 1, 1, 2, 6, 24, 120, 362, 1554, 8241, 55005, 1334961
Offset: 0
A(4,0) = 9: 2143, 2341, 2413, 3142, 3412, 3421, 4123, 4312, 4321.
A(4,1) = 5: 1234, 1432, 3214, 3412, 4231.
A(4,2) = 9: 1234, 1243, 1324, 2134, 2143, 2341, 4123, 4231, 4321.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 2, 2, 2, 2, 2, 2, ...
2, 2, 3, 6, 6, 6, 6, 6, ...
9, 5, 9, 14, 24, 24, 24, 24, ...
44, 21, 34, 53, 78, 120, 120, 120, ...
265, 117, 176, 265, 362, 504, 720, 720, ...
1854, 792, 1106, 1554, 2119, 2790, 3720, 5040, ...
-
A:= proc(n, k) option remember; `if`(k>=n, n!, LinearAlgebra[
Permanent](Matrix(n, (i, j)-> `if`(abs(i-j)=k, 0, 1))))
end:
seq(seq(A(n, d-n), n=0..d), d=0..12);
# second Maple program:
b:= proc(s, k) option remember; (n-> `if`(n=0, 1, add(
`if`(abs(i-n)=k, 0, b(s minus {i}, k)), i=s)))(nops(s))
end:
A:= (n, k)-> `if`(k>=n, n!, b({$1..n}, k)):
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
A[n_, k_] := If[k > n, n!, Permanent[Table[If[Abs[i-j] == k, 0, 1], {i, 1, n}, {j, 1, n}]]]; A[0, 0] = 1;
Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 05 2021, from first Maple program *)
b[s_, k_] := b[s, k] = With[{n = Length[s]}, If[n == 0, 1, Sum[
If[Abs[i-n] == k, 0, b[s ~Complement~ {i}, k]], {i, s}]]];
A[n_, k_] := If[k >= n, n!, b[Range@n, k]];
Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Sep 01 2021, from second Maple program *)
A320582
Number T(n,k) of permutations p of [n] such that |{ j : |p(j)-j| = 1 }| = k; triangle T(n,k), n >= 0, 0 <= k <= n, read by rows.
Original entry on oeis.org
1, 1, 0, 1, 0, 1, 2, 0, 4, 0, 5, 6, 10, 2, 1, 21, 36, 42, 12, 9, 0, 117, 226, 219, 104, 47, 6, 1, 792, 1568, 1472, 800, 328, 64, 16, 0, 6205, 12360, 11596, 6652, 2658, 688, 148, 12, 1, 55005, 109760, 103600, 60840, 24770, 7120, 1560, 200, 25, 0, 543597, 1085560, 1030649, 614420, 255830, 77732, 17750, 2876, 365, 20, 1
Offset: 0
T(4,0) = 5: 1234, 1432, 3214, 3412, 4231.
T(4,1) = 6: 2431, 3241, 3421, 4132, 4213, 4312.
T(4,2) = 10: 1243, 1324, 1342, 1423, 2134, 2314, 2413, 3124, 3142, 4321.
T(4,3) = 2: 2341, 4123.
T(4,4) = 1: 2143.
Triangle T(n,k) begins:
1;
1, 0;
1, 0, 1;
2, 0, 4, 0;
5, 6, 10, 2, 1;
21, 36, 42, 12, 9, 0;
117, 226, 219, 104, 47, 6, 1;
792, 1568, 1472, 800, 328, 64, 16, 0;
6205, 12360, 11596, 6652, 2658, 688, 148, 12, 1;
55005, 109760, 103600, 60840, 24770, 7120, 1560, 200, 25, 0;
...
-
b:= proc(s) option remember; expand((n-> `if`(n=0, 1, add(
`if`(abs(n-j)=1, x, 1)*b(s minus {j}), j=s)))(nops(s)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b({$1..n})):
seq(T(n), n=0..12);
-
b[s_] := b[s] = Expand[With[{n = Length[s]}, If[n==0, 1, Sum[
If[Abs[n-j]==1, x, 1]*b[s~Complement~{j}], {j, s}]]]];
T[n_] := PadRight[CoefficientList[b[Range[n]], x], n+1];
T /@ Range[0, 12] // Flatten (* Jean-François Alcover, Feb 09 2021, after Alois P. Heinz *)
A127548
O.g.f.: Sum_{n>=0} n!*(x/(1+x)^2)^n.
Original entry on oeis.org
1, 1, 0, 1, 4, 19, 112, 771, 6088, 54213, 537392, 5867925, 69975308, 904788263, 12607819040, 188341689287, 3002539594128, 50878366664393, 913161208490016, 17304836525709097, 345279674107957524, 7235298537356113339
Offset: 0
-
A127548 := proc(n) if n = 0 then 1 ; else add(factorial(s)*(-1)^(n-s)*binomial(s+n-1,2*s-1),s=1..n) ; fi ; end: for n from 0 to 20 do printf("%d,",A127548(n)) ; od ; # R. J. Mathar, Jul 13 2007
-
nn = 21; CoefficientList[Series[Sum[n!*(x/(1 + x)^2)^n, {n, 0, nn}], {x, 0, nn}], x] (* Michael De Vlieger, Sep 04 2016 *)
-
import math
def binomial(n,m):
a=1
for k in range(n-m+1,n+1):
a *= k
return a//math.factorial(m)
def A127548(n):
if n == 0:
return 1
a=0
for s in range(1,n+1):
a += (-1)**(n-s)*binomial(s+n-1,2*s-1)*math.factorial(s)
return a
for n in range(30):
print(A127548(n))
# R. J. Mathar, Oct 20 2009
A306511
Number of permutations p of [n] having at least one index i with |p(i)-i| = 1.
Original entry on oeis.org
0, 0, 1, 4, 19, 99, 603, 4248, 34115, 307875, 3085203, 33993870, 408482695, 5316309607, 74499953255, 1118421967520, 17907571955927, 304619809031127, 5486197279305911, 104289196264058030, 2086706157642260387, 43838287730208552691, 964790364323910060691
Offset: 0
-
a:= proc(n) option remember; `if`(n<5, [0$2, 1, 4, 19][n+1],
(2*(n^3-8*n^2+20*n-14)*a(n-1)-(n-4)*(n-1)*(n^2-5*n+7)*
a(n-2)-(n-2)*(n^2-7*n+13)*a(n-3)+(n^4-12*n^3+53*n^2
-102*n+71)*a(n-4)+(n-4)*(n^2-5*n+7)*a(n-5))/(n^2-7*n+13))
end:
seq(a(n), n=0..23);
-
a[n_] := n! - Sum[Sum[(-1)^k (i-k)! Binomial[2i-k, k], {k, 0, i}],
{i, 0, n}];
a /@ Range[0, 23] (* Jean-François Alcover, May 03 2021, after Vaclav Kotesovec in A078480 *)
Showing 1-4 of 4 results.
Comments