cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A273596 For n >= 2, a(n) is the number of slim rectangular diagrams of length n.

Original entry on oeis.org

1, 3, 9, 32, 139, 729, 4515, 32336, 263205, 2401183, 24275037, 269426592, 3257394143, 42615550453, 599875100487, 9040742057760, 145251748024649, 2478320458476795, 44755020000606961, 852823700470009056, 17101229029400788083, 359978633317886558801, 7936631162022905081707
Offset: 2

Views

Author

Tamas Dekany, May 26 2016

Keywords

Examples

			The initial term is the diagram of the four element diamond shape lattice.
		

Crossrefs

Programs

  • Maple
    A273596 := proc (n) option remember; `if`(n = 2, 1, `if`(n = 3, 3, (n-2)*procname(n-1) + procname(n-2) + 2)) end: seq(A273596(n), n = 2..20); # Peter Bala, Jan 08 2017
  • Mathematica
    x = 15;
    SRectD = Table[0, {x}];
    For[n = 2, n < x, n++,
    For[a = 1, a < n, a++,
       For[b = 1, b <= n - a, b++,
        SRectD[[n]] +=
          Binomial[n - a - 1, b - 1]*
           Binomial[n - b - 1, a - 1]*(n - a - b)!;
        ]
       ]
      Print[n, " ", SRectD[[n]]]
    ]
    (* Alternatively: *)
    T[n_, k_] := HypergeometricPFQ[{k+1, k-n}, {}, -1];
    Table[Sum[T[n,k], {k,0,n}], {n,0,22}] (* Peter Luschny, Oct 05 2017 *)
  • PARI
    a(n)= sum(rps=1, n, sum(r=1, n, s = rps-r; binomial(n-r-1, s-1) * binomial(n-s-1, r-1) * (n-r-s)!)); \\ Michel Marcus, Jun 12 2016

Formula

a(n) = Sum_{1<=r,s; r+s<=n} binomial(n-r-1, s-1) * binomial(n-s-1, r-1) * (n-r-s)!.
a(n) ~ exp(2) * n! / n^2. - Vaclav Kotesovec, Jun 29 2016
a(n) = Sum_{k=0..n} hypergeom([k+1, k-n], [], -1). - Peter Luschny, Oct 05 2017
From Peter Bala, Jan 08 2018: (Start)
a(n) = Sum_{k = 0..n-2} k!*binomial(n+k-1, 2*k+1).
a(n) = (n - 2)*a(n-1) + a(n-2) + 2, with a(2) = 1, a(3) = 3.
a(n+2) = 1/n!*Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)* A000522(n)^2.
Row sums of array A143409 read as a triangle.
O.g.f.: Sum_{n >= 0} n!*x^(n+2)/(1 - x)^(2*n+2). Cf. A000179, A000271, A000904 and A127548.
O.g.f. with offset 0: 1/(1 - x) o 1/(1 - x) = 1 + 3*x + 9*x^2 + 32*x^3 + ..., where o denotes the white diamond multiplication of power series. See the Bala link for details. (End)

A332709 Triangle T(n,k) read by rows where T(n,k) is the number of ménage permutations that map 1 to k, with 3 <= k <= n.

Original entry on oeis.org

1, 1, 1, 4, 5, 4, 20, 20, 20, 20, 115, 116, 117, 116, 115, 787, 791, 791, 791, 791, 787, 6184, 6203, 6204, 6205, 6204, 6203, 6184, 54888, 55000, 55004, 55004, 55004, 55004, 55000, 54888, 542805, 543576, 543595, 543596, 543597, 543596, 543595, 543576, 542805
Offset: 3

Views

Author

Peter Kagey, Feb 20 2020

Keywords

Comments

Rows are palindromic.
Conjecture: Rows are unimodal (i.e., increasing, then decreasing).
Conjecture: T(n,k) - T(n,k-1) = A127548(n-2k+4) for n >= 2k - 3. - Peter Kagey, Jan 22 2021

Examples

			Triangle begins:
  n\k|     3      4      5      6      7      8      9     10
  ---+--------------------------------------------------------
   3 |     1
   4 |     1,     1
   5 |     4,     5,     4
   6 |    20,    20,    20,    20
   7 |   115,   116,   117,   116,   115
   8 |   787,   791,   791,   791,   791,   787
   9 |  6184,  6203,  6204,  6205,  6204,  6203,  6184
  10 | 54888, 55000, 55004, 55004, 55004, 55004, 55000, 54888
For n=5 and k=3, the T(5,3)=4 permutations on five letters that start with a 3 are 31524, 34512, 35124, and 35212.
		

Crossrefs

Cf. A127548.
First column given by A258664.
Second column given by A258665.
Third column given by A258666.
Fourth column given by A258667.
Row sums given by A000179.

Programs

  • Mathematica
    T[n_, k_] :=
    Sum[Sum[(-1)^i*(n - i - 1)!*Binomial[2*k - j - 4, j]*
        Binomial[2*(n - k + 1) - i + j, i - j], {j, Max[k + i - n - 1, 0],
         Min[i, k - 2]}], {i, 0, n - 1}]
    (* Peter Kagey, Jan 22 2021 *)

Formula

T(n,k) = Sum_{i=0..n-1} Sum_{j=max(k+i-n-1,0)..min(i,k-2)} (-1)^i*(n-i-1)! * binomial(2k-j-4,j) * binomial(2(n-k+1)-i+j,i-j).
Showing 1-2 of 2 results.