cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A078539 Least non-balanced x (i.e., not in A020492) such that sigma(2n-1,x)/phi(x) is an integer.

Original entry on oeis.org

38, 46, 295, 38, 235, 749, 38, 3687, 6128, 38, 1415, 46, 38, 4254, 10451, 38, 46, 8351, 38, 334, 4511, 38, 3398, 295, 38, 1286, 46, 38, 148870, 11015, 38, 46, 35519, 38, 10239, 14072, 38, 235, 76088, 38, 5991, 46, 38, 718, 295, 38, 46, 11654, 38, 30761
Offset: 2

Views

Author

Labos Elemer, Dec 02 2002

Keywords

Examples

			n=7: 2n-1 = 13, cases of sigma(13,x)/phi(x) is an integer listed in A015771: 1, 2, 3,6, 12, etc,; the first term which is non-balanced, i.e., not in A020492 is a(7) = 749 = A020492(31); increasing n, the trend of a(n) is roughly the same. If 2n-1 = 3s, i.e., is divisible by 3, then a(3s) = 38. Similar relationships hold for 2n - 1 = 5s, 7s, 11s, etc.
		

Crossrefs

Programs

  • Mathematica
    Table[fl=1; Do[s1=DivisorSigma[1, n]/EulerPhi[n]; sk=DivisorSigma[2*k-1, n]/EulerPhi[n]; If[ !IntegerQ[s1]&&IntegerQ[sk]&&Equal[fl, 1], Print[{n, 2*k-1}]; fl=0], {n, 1, 1000000}], {k, 2, 100}]

Formula

a(n) = min{x; sigma(1,x) mod phi(x) = 0 but sigma(2n-1, x) mod phi(x) is not 0}.

Extensions

a(31) corrected by Amiram Eldar, Jul 21 2019

A078540 Least non-balanced x (i.e., not in A020492) such that sigma(p(n),x)/phi(x) is an integer, where p(n) = n-th prime.

Original entry on oeis.org

22, 38, 46, 295, 235, 749, 3687, 6128, 1415, 4254, 10451, 8351, 334, 4511, 3398, 1286, 148870, 11015, 35519, 10239, 14072, 76088, 5991, 718, 11654, 30761, 7431, 20993, 700654, 22169, 5095, 4198, 27415, 26744, 14318, 48368, 180878, 16991, 173123, 4166, 5033, 7246
Offset: 1

Views

Author

Labos Elemer, Dec 02 2002

Keywords

Examples

			n=6: prime(6)=13, cases of sigma(13,x)/phi(x) is an integer are listed in A015771: 1, 2, 3, 6, 12, etc.; the first term which is non-balanced, i.e., not in A020492, is a(6) = 749 = A020492(31); a(29) = 700854 and a(45) = 510759 are remarkably large.
		

Crossrefs

Programs

  • Mathematica
    Table[fl=1; Do[s1=DivisorSigma[1, n]/EulerPhi[n]; sk=DivisorSigma[Prime[k], n]/EulerPhi[n]; If[ !IntegerQ[s1]&&IntegerQ[sk]&&Equal[fl, 1], Print[{n, Prime[k]}]; fl=0], {n, 1, 1000000}], {k, 1, 100}]
  • PARI
    lista(nmax) = {my(ps = primes(nmax), pmax = ps[#ps], v = vector(pmax), c = 0, k = 2, f, e, p); while(c < nmax, f = factor(k); e = eulerphi(f); if(sigma(f) % e > 0, for(i = 1, nmax, p = ps[i]; if(!(sigma(f, p) % e) && v[p] == 0, c++; v[p] = k))); k++); for(i = 1, pmax, if(v[i] > 0, print1(v[i], ", ")));} \\ Amiram Eldar, Aug 29 2024

Formula

a(n) = min{x; A000203(x) mod A000005(x) = 0 but sigma(A000040(n), x) mod phi(x) is not 0}.

Extensions

a(18) corrected and more terms added by Amiram Eldar, Aug 29 2024

A078542 Unbalanced composite numbers.

Original entry on oeis.org

4, 8, 9, 10, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 32, 33, 34, 36, 38, 39, 40, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 72, 74, 75, 76, 77, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 106, 108
Offset: 1

Views

Author

Labos Elemer, Dec 04 2002

Keywords

Examples

			46 = 2*23 and sigma(46)/phi(46) = 72/22 is not an integer, so 46 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Do[s=DivisorSigma[1, n]/EulerPhi[n]; If[ !IntegerQ[s]&&!PrimeQ[n], Print[n]], {n, 1, 256}]
    Select[Range[150],CompositeQ[#]&&!IntegerQ[DivisorSigma[1,#]/ EulerPhi[ #]]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 19 2020 *)
  • PARI
    lista(nn) = forcomposite(n=1, nn, if (denominator(sigma(n)/eulerphi(n)) != 1, print1(n, ", "))); \\ Michel Marcus, Jul 11 2018

A078543 Balanced refactorable numbers.

Original entry on oeis.org

1, 2, 12, 56, 248, 12192, 28896, 60960, 61344, 66528, 86304, 94944, 129504, 133920, 140448, 182880, 201924, 207264, 242316, 282720, 408672, 416640, 426720, 429408, 604128, 664608, 671760, 776736, 792480, 854496, 862752, 906528
Offset: 1

Views

Author

Labos Elemer, Dec 04 2002

Keywords

Examples

			n=56: tau(56)=8, sigma(56)=120, phi(56)=24, q1=120/24=5 for balancedness, q2=56/8=7 for refactorability.
		

Crossrefs

Intersection of A033950 and A020492.

Programs

  • Mathematica
    Do[s=DivisorSigma[1, n]/EulerPhi[n]; If[ !IntegerQ[s]&&!PrimeQ[n], Print[n]], {n, 1, 256}]
Showing 1-4 of 4 results.