cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A078559 Numerator of Product_{i=1..n} (p_i + 1)/(p_i - 1) where p_i is the i-th prime.

Original entry on oeis.org

3, 6, 9, 12, 72, 84, 189, 21, 252, 270, 288, 304, 1596, 152, 3648, 49248, 295488, 1526688, 17302464, 622888704, 640191168, 1707176448, 10243058688, 23046882048, 23527025424, 599939148312, 47054050848, 2540918745792
Offset: 1

Views

Author

Labos Elemer, Dec 06 2002

Keywords

References

  • R. K. Guy, Unsolved Problems in Number Theory, B48.

Crossrefs

Programs

  • Maple
    Q:= 1: p:= 1:
    for n from 1 to 100 do
      p:= nextprime(p);
      Q:= Q * (p+1)/(p-1);
      A[n]:= numer(Q);
    od:
    seq(A[i],i=1..100); # Robert Israel, May 11 2018
  • Mathematica
    Numerator[Table[Product[(Prime[i] + 1)/(Prime[i] - 1), {i, n}], {n, 30}]] (* Alonso del Arte, Aug 23 2011 *)
  • PARI
    a(n) = numerator(prod(i=1, n, (prime(i)+1)/(prime(i)-1))); \\ Michel Marcus, May 11 2018

Formula

a(n) = A054640(n)/A078558(n).
a(n)/A078560(n) ~ C*log^2(prime(n)), where C = exp(2*gamma)/zeta(2) = 6(e^gamma/pi)^2 = A091724 / A013661. Physics note: (a(n)/A078560(n) - 1)/(a(n)/A078560(n) + 1) = tanh(Sum_{k=1..n} arctanh(1/prime(k))) is the relativistic sum of n velocities c/2, c/3, ..., c/prime(n), in units where the speed of light c = 1. - Thomas Ordowski, Nov 06 2024

Extensions

Improved definition from Franklin T. Adams-Watters, Dec 02 2005
Showing 1-1 of 1 results.