cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078585 Decimal expansion of Sum_{n>=0} 1/4^(2^n).

Original entry on oeis.org

3, 1, 6, 4, 2, 1, 5, 0, 9, 0, 2, 1, 8, 9, 3, 1, 4, 3, 7, 0, 8, 0, 7, 9, 7, 3, 7, 5, 3, 0, 5, 2, 5, 2, 2, 1, 7, 0, 3, 3, 1, 1, 3, 7, 5, 9, 2, 0, 5, 5, 2, 8, 0, 4, 3, 4, 1, 2, 1, 0, 9, 0, 3, 8, 4, 3, 0, 5, 5, 6, 1, 4, 1, 9, 4, 5, 5, 5, 3, 0, 0, 0, 6, 0, 4, 8, 5, 3, 1, 3, 2, 4, 8, 3, 9, 7, 2, 6, 5, 6, 1, 7, 5, 5, 8
Offset: 0

Views

Author

Robert G. Wilson v, Dec 01 2002

Keywords

Examples

			0.316421509021893143708079737530525221703311375920552804341210903843055...
		

Crossrefs

Continued fraction is given in A006464.

Programs

  • Mathematica
    RealDigits[ N[ Sum[1/4^(2^n), {n, 0, Infinity}], 110]][[1]]
  • PARI
    { default(realprecision, 20080); x=suminf(n=0, 1/4^(2^n)); x*=10; for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b078585.txt", n, " ", d)); } \\ Harry J. Smith, May 11 2009

Formula

Equals -Sum_{k>=1} mu(2*k)/(4^k - 1), where mu is the Möbius function (A008683). - Amiram Eldar, Jul 12 2020
Equals A007404 - 1/2. - Kevin Ryde, Nov 11 2020